Lentils
Overview
Lentils are a staple legume in the BRAIN Diet, providing plant protein, fiber, folate, iron, and prebiotic compounds that support gut health and neurotransmitter synthesis. Lentils have a DIAAS score of 65-70, indicating they are methionine/cysteine-limited and should be paired with grains for complete amino acid profile. Lentils are listed as sources for iron, zinc, and glutamate synthesis, supporting neurotransmitter pathways.
Recipes
Substances
Preparation Notes
- Soak and cook thoroughly to reduce phytates and improve mineral bioavailability; soaking and sprouting reduces phytates in legumes/grains, improving non-heme iron and zinc bioavailability
- Pair with grains for complete amino acid profile; grain-legume complementarity improves essential amino-acid coverage
- Pair with vitamin C sources to enhance iron absorption, with studies showing up to a fourfold increase when consumed together Hallberg et al. 1989
- Source of prebiotic fiber (GOS - galactooligosaccharides) supporting gut microbiome health
Biological Target Matrix
| Biological Target | Substance | Therapeutic Areas | Mechanism of Action |
|---|---|---|---|
| Hormonal Response | Magnesium | Supports calcium modulation along with vitamin D, taurine, phospholipids, and flavonoids; supports insulin sensitivity, sympathetic arousal, and mitochondrial excitability | |
| Inflammation | Copper | Participates in redox enzymes and antioxidant networks | |
| Inflammation | Zinc | Supports immune signaling; gut barrier integrity disrupted by nutrient deficiencies including zinc | |
| Insulin Response | Magnesium | Supports insulin sensitivity and glucose metabolism; magnesium deficiency is associated with insulin resistance; supports enzymes involved in glucose metabolism | |
| Insulin Response | Vitamin B1 (Thiamine) | Supports glucose metabolism and insulin sensitivity through mitochondrial function | |
| Methylation | Methionine | Essential amino acid that forms S-adenosylmethionine (SAMe), the universal methyl donor for neurotransmitter synthesis and membrane phospholipid methylation | |
| Methylation | Vitamin B6 (Pyridoxine → PLP) | Essential cofactor in remethylation of homocysteine to methionine, which is converted to S-adenosylmethionine (SAMe); works with B2, folate, and B12 | |
| Methylation | Vitamin B9 (Folate; 5-MTHF) | Essential cofactor in remethylation of homocysteine to methionine, which is converted to S-adenosylmethionine (SAMe); SAMe fuels synthesis of dopamine, norepinephrine, and serotonin and drives phospholipid methylation in neuronal membranes | |
| Methylation | Zinc | Deficiencies in vitamins and minerals essential for methylation, such as folate, vitamin B12, and zinc, are correlated to ADHD symptoms; supplementing these micronutrients has shown potential in supporting methylation and reducing symptom severity | |
| Mitochondrial Support | Iron | Critical for oxygen delivery to the brain via hemoglobin; supports mitochondrial function and energy production | |
| Mitochondrial Support | Magnesium | Supports enzymes involved in glycolysis and the Krebs cycle (processes that generate ATP from glucose); binds to ATP and all triphosphates in cells to activate them | |
| Mitochondrial Support | Manganese | Supports mitochondrial antioxidant defense through MnSOD activity | |
| Mitochondrial Support | Vitamin B1 (Thiamine) | Essential for mitochondrial glucose metabolism in the brain leading to ATP production; supports PDH (pyruvate dehydrogenase) and α-KGDH (alpha-ketoglutarate dehydrogenase) function | |
| Neurochemical Balance | Copper | Cofactor in dopamine β-hydroxylase, supporting catecholamine synthesis; supports norepinephrine synthesis | |
| Neurochemical Balance | Iron | Essential cofactor for tyrosine hydroxylase, the rate-limiting enzyme in the conversion of tyrosine to dopamine; critical for catecholamine synthesis | |
| Neurochemical Balance | Magnesium | Broad cofactor for neurotransmitter synthesis and receptor modulation (e.g., NMDA, GABA); functions as an NMDA receptor antagonist and GABA receptor modulator; assists enzymes involved in synthesis of dopamine and serotonin | |
| Neurochemical Balance | Phenylalanine | Essential amino acid that converts to tyrosine and supports catecholamine synthesis (dopamine, norepinephrine); participates in LAT1 competition at the blood-brain barrier | |
| Neurochemical Balance | Potassium | Critical for membrane potential, nerve signaling, and neuronal excitability; adequate intake balances sodium effects | |
| Neurochemical Balance | Tryptophan | Precursor for serotonin and melatonin; brain entry competes at LAT1 with other large neutral amino acids (LNAAs); carbohydrate-rich, low-protein meals raise the plasma tryptophan:LNAA ratio because insulin pushes competing LNAAs out to muscles; can feed NAD+ synthesis via the kynurenine pathway | |
| Neurochemical Balance | Tyrosine | Catecholamine precursor (dopamine, norepinephrine); brain transport via LAT1 competes with other LNAAs; iron is an essential cofactor for tyrosine hydroxylase, the rate-limiting enzyme in conversion of tyrosine to dopamine; cofactors include iron, B6, folate, omega-3s, and BH₄ (tetrahydrobiopterin) to support rate-limiting steps in catecholamine synthesis | |
| Neurochemical Balance | Vitamin B6 (Pyridoxine → PLP) | Cofactor for synthesis of dopamine, serotonin, GABA, and glutamate; supports rate-limiting steps in catecholamine synthesis; requires PDXK activation with magnesium and ATP support | |
| Neurochemical Balance | Vitamin B9 (Folate; 5-MTHF) | Supports neurotransmitter synthesis through methylation; cofactor for dopamine synthesis alongside iron, B6, and omega-3s | |
| Neurochemical Balance | Zinc | Important for DNA synthesis, cell division, and neurotransmitter regulation, particularly in modulating dopamine—a key neurotransmitter implicated in ADHD; acts as an allosteric modulator of the GABA receptor; supports glutamate regulation | |
| Oxidative Stress | Copper | Included in antioxidant enzyme networks; interacts with iron metabolism affecting oxidative stress | |
| Oxidative Stress | Manganese | Essential cofactor for MnSOD (SOD2), supporting detoxification of superoxide within the mitochondrial matrix | |
| Oxidative Stress | Zinc | Essential mineral that serves as a cofactor for antioxidant enzymes; works synergistically with other antioxidants; heavy metals are detoxified by metallothionein (MT) metal carrier proteins that must bind with zinc and copper | |
| Stress Response | Magnesium | Helps manage stress responses; combined with vitamin D reduced behavioral problems; synergy with zinc and omega-3s reported |
References
- Lentils listed as plant protein source (DIAAS 65-70), methionine/cysteine-limited; pair with grains for complete amino acid profile
- Lentils mentioned as source of fiber, folate, iron for neurotransmitter synthesis
- Part of grain-legume complementarity strategy; grains (typically lysine-limited) and legumes (methionine/cysteine-limited) complete each other's profiles when paired
- Source of prebiotic fiber (GOS - galactooligosaccharides) supporting gut microbiome health
- Glutamate: Principal excitatory neurotransmitter; food sources include lentils, poultry, fish, spinach, pumpkin seeds; cofactors include glutamine (from protein), B6, magnesium, zinc
- Zinc: Neurotransmitter modulation, synaptic plasticity, antioxidant enzymes; food sources include oysters, beef, crab, chicken, pork, pumpkin seeds, lentils, chickpeas, cashews
- Soaking and sprouting reduces phytates in legumes/grains, improving non-heme iron and zinc bioavailability GREINER and KONIETZNY 1999
- Vitamin C significantly improves non-heme iron absorption by reducing ferric to ferrous iron, with studies showing up to a fourfold increase when consumed together Hallberg et al. 1989




















