Skip to main content

BRAIN Diet References

All References

  1. #Khaliulin, I. et al. (2025). The multifaceted role of mitochondria in autism spectrum disorder. Molecular Psychiatry, 30(2), 629--650. https://doi.org/10.1038/s41380-024-02725-zkhaliulin_multifaceted_2025
  2. #Beaudry‐Richard, A. et al. (2025). Vitamin {\textless}scp{\textgreater}{B12}{\textless}/scp{\textgreater} {Levels} {Association} with {Functional} and {Structural} {Biomarkers} of {Central} {Nervous} {System} {Injury} in {Older} {Adults}. Annals of Neurology. https://doi.org/10.1002/ana.27200beaudryrichard_vitamin_2025
  3. #Briones, A. et al. (2025). Role of {Inflammatory} and {Proresolving} {Mediators} in {Endothelial} {Dysfunction}. Basic \& Clinical Pharmacology \& Toxicology, 136(5). https://doi.org/10.1111/bcpt.70026briones_role_2025
  4. #Horner, D. et al. (2025). A western dietary pattern during pregnancy is associated with neurodevelopmental disorders in childhood and adolescence. Nature Metabolism, 7(3), 586--601. https://doi.org/10.1038/s42255-025-01230-zhorner_western_2025
  5. #Kumar, V. et al. (2025). Omega-3 fatty acids and the gut microbiome: a new frontier in cardiovascular disease prevention. Discover Medicine, 2(1), 53. https://doi.org/10.1007/s44337-025-00212-0kumar_omega-3_2025
  6. #Gholipour, D. et al. (2025). Supplementation of {Omega}‐3 {Increases} {Serum} {Levels} of {Brain}‐{Derived} {Neurotrophic} {Factor} and {Decreases} {Depression} {Status} in {Patients} {With} {Bipolar} {Disorder}: {A} {Randomized}, {Double}‐{Blind}, {Placebo}‐{Controlled} {Clinical} {Trial}. Journal of Human Nutrition and Dietetics, 38(3). https://doi.org/10.1111/jhn.70076gholipour_supplementation_2025
  7. # (2025). {WHO} micronutrient deficiencies.noauthor_who_2025
  8. #Marcelli, I. et al. (2025). Bridging {ADHD} and {Metabolic} {Disorders}: {Insights} into {Shared} {Mechanisms} and {Clinical} {Implications}. Diabetology, 6(5), 40. https://doi.org/10.3390/diabetology6050040marcelli_bridging_2025
  9. #Jigeer, G. et al. (2025). Vegetarian diet and healthy aging among {Chinese} older adults: a prospective study. npj Aging, 11(1), 25. https://doi.org/10.1038/s41514-025-00213-4jigeer_vegetarian_2025
  10. #Opazo-Navarrete, M. et al. (2025). Comprehensive {Review} of {Plant} {Protein} {Digestibility}: {Challenges}, {Assessment} {Methods}, and {Improvement} {Strategies}. Applied Sciences, 15(7), 3538. https://doi.org/10.3390/app15073538opazo-navarrete_comprehensive_2025
  11. #Gao, Y. et al. (2025). Fermented {Dairy} {Products} as {Precision} {Modulators} of {Gut} {Microbiota} and {Host} {Health}: {Mechanistic} {Insights}, {Clinical} {Evidence}, and {Future} {Directions}. Foods, 14(11), 1946. https://doi.org/10.3390/foods14111946gao_fermented_2025
  12. #Zhang, J. et al. (2025). Exploring the potential protective role of anthocyanins in mitigating micro/nanoplastic-induced reproductive toxicity: {A} steroid receptor perspective. Journal of Pharmaceutical Analysis, 15(2), 101148. https://doi.org/10.1016/j.jpha.2024.101148zhang_exploring_2025
  13. #Chai, A. (2025). Pleiotropic neurotransmitters: neurotransmitter-receptor crosstalk regulates excitation-inhibition balance in social brain functions and pathologies. Frontiers in Neuroscience, 19, 1552145. https://doi.org/10.3389/fnins.2025.1552145chai_pleiotropic_2025
  14. #Aksoy, Z. & Doguer, C. (2025). Dietary {Alignment} with the {Mediterranean} {Diet} is {Associated} with a {Lower} {Risk} of {Attention} {Deficit} {Hyperactivity} {Disorder} in {University} {Students}: {A} {Cross}-{Sectional} {Study}. Journal of the American Nutrition Association, 44(7), 636--643. https://doi.org/10.1080/27697061.2025.2480140aksoy_dietary_2025
  15. #Brown, A. et al. (2025). Associations of the gut microbiome and inflammatory markers with mental health symptoms: a cross-sectional study on {Danish} adolescents. Scientific Reports, 15(1), 10378. https://doi.org/10.1038/s41598-025-94687-7brown_associations_2025
  16. #Tamburini, B. et al. (2025). Extra {Virgin} {Olive} {Oil} {Polyphenol}-{Enriched} {Extracts} {Exert} {Antioxidant} and {Anti}-{Inflammatory} {Effects} on {Peripheral} {Blood} {Mononuclear} {Cells} from {Rheumatoid} {Arthritis} {Patients}. Antioxidants, 14(2), 171. https://doi.org/10.3390/antiox14020171tamburini_extra_2025
  17. #Aron, L. et al. (2025). Lithium deficiency and the onset of {Alzheimer}’s disease. Nature. https://doi.org/10.1038/s41586-025-09335-xaron_lithium_2025
  18. #Damtie, Y. et al. (2025). The association between maternal diabetes and the risk of attention deficit hyperactivity disorder in offspring: an updated systematic review and meta-analysis. European Child \& Adolescent Psychiatry, 34(8), 2417--2429. https://doi.org/10.1007/s00787-025-02645-5damtie_association_2025
  19. #Power, T. (2025). The {DOSE} effect. London: HQ.power_dose_2025
  20. #Hashimoto, K. et al. (2025). Positive impact of a 10-min walk immediately after glucose intake on postprandial glucose levels. Scientific Reports, 15(1), 22662. https://doi.org/10.1038/s41598-025-07312-yhashimoto_positive_2025
  21. #Hirose, N. et al. (2025). Effects of a 12-{Week} {Exercise} {Intervention} on {Primitive} {Reflex} {Retention} and {Social} {Development} in {Children} with {ASD} and {ADHD}. Children, 12(8), 987. https://doi.org/10.3390/children12080987hirose_effects_2025
  22. #Nair, S. et al. (2025). Associations of {ADHD} traits, sleep/circadian factors, depression and quality of life. BMJ mental health, 28(1), e301625. https://doi.org/10.1136/bmjment-2025-301625nair_associations_2025
  23. #Dolapoglu, N. et al. (2025). The relationship between attention deficit hyperactivity disorder emotion regulation difficulties and sleep quality in adults: a cross sectional study. BMC Psychiatry, 25(1), 432. https://doi.org/10.1186/s12888-025-06875-4dolapoglu_relationship_2025
  24. #O'Nions, E. et al. (2025). Life expectancy and years of life lost for adults with diagnosed {ADHD} in the {UK}: matched cohort study. The British Journal of Psychiatry, 226(5), 261--268. https://doi.org/10.1192/bjp.2024.199onions_life_2025
  25. #Rakshasa-Loots, A. et al. (2025). Metabolic biomarkers of clinical outcomes in severe mental illness ({METPSY}): protocol for a prospective observational study in the {Hub} for metabolic psychiatry. BMC Psychiatry, 25(1), 122. https://doi.org/10.1186/s12888-025-06579-9rakshasa-loots_metabolic_2025
  26. #Valladão, S. et al. (2024). Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: {Current} findings. Neuroscience \& Biobehavioral Reviews, 164, 105771. https://doi.org/10.1016/j.neubiorev.2024.105771valladao_adenosinergic_2024
  27. #Steckler, R. et al. (2024). Disrupted gut harmony in attention-deficit/hyperactivity disorder: {Dysbiosis} and decreased short-chain fatty acids. Brain, Behavior, \& Immunity - Health, 40, 100829. https://doi.org/10.1016/j.bbih.2024.100829steckler_disrupted_2024
  28. #Steckler, R. et al. (2024). Disrupted gut harmony in attention-deficit/hyperactivity disorder: {Dysbiosis} and decreased short-chain fatty acids. Brain, Behavior, \& Immunity - Health, 40, 100829. https://doi.org/10.1016/j.bbih.2024.100829steckler_disrupted_2024-1
  29. #Brikell, I. et al. (2024). {ADHD} medication discontinuation and persistence across the lifespan: a retrospective observational study using population-based databases. The Lancet. Psychiatry, 11(1), 16--26. https://doi.org/10.1016/S2215-0366(23)00332-2brikell_adhd_2024
  30. #Kurokawa, S. et al. (2024). A comparative study on dietary diversity and gut microbial diversity in children with autism spectrum disorder, attention‐deficit hyperactivity disorder, their neurotypical siblings, and non‐related neurotypical volunteers: a cross‐sectional study. Journal of Child Psychology and Psychiatry, 65(9), 1184--1195. https://doi.org/10.1111/jcpp.13962kurokawa_comparative_2024
  31. #Li, Y. et al. (2024). Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the {ACSS2}/{H3K9ac}/{BDNF} pathway. Environment International, 184, 108479. https://doi.org/10.1016/j.envint.2024.108479li_sodium_2024
  32. #Li, Y. et al. (2024). Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the {ACSS2}/{H3K9ac}/{BDNF} pathway. Environment International, 184, 108479. https://doi.org/10.1016/j.envint.2024.108479li_sodium_2024-1
  33. #Bertoni, C. et al. (2024). The {Role} of {Alpha}-{Linolenic} {Acid} and {Other} {Polyunsaturated} {Fatty} {Acids} in {Mental} {Health}: {A} {Narrative} {Review}. International Journal of Molecular Sciences, 25(22), 12479.bertoni_role_2024
  34. #Chen, J. et al. (2024). Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in {European} populations: a {Mendelian} randomization analysis. Frontiers in Nutrition, 11, 1415793.chen_exploring_2024
  35. #Chen, J. et al. (2024). Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in {European} populations: a {Mendelian} randomization analysis. Frontiers in Nutrition, 11, 1415793.chen_exploring_2024-1
  36. #Bertoni, C. et al. (2024). The {Role} of {Alpha}-{Linolenic} {Acid} and {Other} {Polyunsaturated} {Fatty} {Acids} in {Mental} {Health}: {A} {Narrative} {Review}. International Journal of Molecular Sciences, 25(22), 12479.bertoni_role_2024-1
  37. #Steckler, R. et al. (2024). Disrupted gut harmony in attention-deficit/hyperactivity disorder: {Dysbiosis} and decreased short-chain fatty acids. Brain, Behavior, \& Immunity - Health, 40, 100829. https://doi.org/10.1016/j.bbih.2024.100829steckler_disrupted_2024-2
  38. #Li, Y. et al. (2024). Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the {ACSS2}/{H3K9ac}/{BDNF} pathway. Environment International, 184, 108479. https://doi.org/10.1016/j.envint.2024.108479li_sodium_2024-2
  39. #Chen, J. et al. (2024). Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in {European} populations: a {Mendelian} randomization analysis. Frontiers in Nutrition, 11, 1415793.chen_exploring_2024-2
  40. #Bertoni, C. et al. (2024). The {Role} of {Alpha}-{Linolenic} {Acid} and {Other} {Polyunsaturated} {Fatty} {Acids} in {Mental} {Health}: {A} {Narrative} {Review}. International Journal of Molecular Sciences, 25(22), 12479.bertoni_role_2024-2
  41. #Kurokawa, S. et al. (2024). A comparative study on dietary diversity and gut microbial diversity in children with autism spectrum disorder, attention‐deficit hyperactivity disorder, their neurotypical siblings, and non‐related neurotypical volunteers: a cross‐sectional study. Journal of Child Psychology and Psychiatry, 65(9), 1184--1195. https://doi.org/10.1111/jcpp.13962kurokawa_comparative_2024-1
  42. #Wang, L. et al. (2024). Add-{On} {Bifidobacterium} {Bifidum} {Supplement} in {Children} with {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {A} 12-{Week} {Randomized} {Double}-{Blind} {Placebo}-{Controlled} {Clinical} {Trial}. Nutrients, 16(14), 2260. https://doi.org/10.3390/nu16142260wang_add-bifidobacterium_2024
  43. #Cataldo, P. et al. (2024). Comprehensive characterization of γ-aminobutyric acid ({GABA}) production by {Levilactobacillus} brevis {CRL} 2013: insights from physiology, genomics, and proteomics. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1408624cataldo_comprehensive_2024
  44. #Jakobi, B. et al. (2024). The gut-microbiome in adult {Attention}-deficit/hyperactivity disorder - {A} {Meta}-analysis. European Neuropsychopharmacology, 88, 21--29. https://doi.org/10.1016/j.euroneuro.2024.07.004jakobi_gut-microbiome_2024
  45. #Razavinia, F. et al. (2024). Vitamins {B} $_{\textrm{9}}$ and {B} $_{\textrm{12}}$ in children with attention deficit hyperactivity disorder ({ADHD}). International Journal for Vitamin and Nutrition Research, 94(5-6), 476--484. https://doi.org/10.1024/0300-9831/a000809razavinia_vitamins_2024
  46. #Popiolek-Kalisz, J. (2024). Ketogenic diet and cardiovascular risk – state of the art review. Current Problems in Cardiology, 49(3), 102402. https://doi.org/10.1016/j.cpcardiol.2024.102402popiolek-kalisz_ketogenic_2024
  47. #Li, W. et al. (2024). The gut microbiota changed by ketogenic diets contribute to glucose intolerance rather than lipid accumulation. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1446287li_gut_2024
  48. #Abhishek, F. et al. (2024). Dietary {Interventions} and {Supplements} for {Managing} {Attention}-{Deficit}/{Hyperactivity} {Disorder} ({ADHD}): {A} {Systematic} {Review} of {Efficacy} and {Recommendations}. Cureus. https://doi.org/10.7759/cureus.69804abhishek_dietary_2024
  49. #Jangra, A. et al. (2024). Emergence of taurine as a therapeutic agent for neurological disorders. Neural Regeneration Research, 19(1), 62--68. https://doi.org/10.4103/1673-5374.374139jangra_emergence_2024
  50. #MacDonald, H. et al. (2024). The dopamine hypothesis for {ADHD}: {An} evaluation of evidence accumulated from human studies and animal models. Frontiers in Psychiatry, 15. https://doi.org/10.3389/fpsyt.2024.1492126macdonald_dopamine_2024
  51. #Lukovac, T. et al. (2024). Serum {Biomarker} {Analysis} in {Pediatric} {ADHD}: {Implications} of {Homocysteine}, {Vitamin} {B12}, {Vitamin} {D}, {Ferritin}, and {Iron} {Levels}. Children, 11(4), 497. https://doi.org/10.3390/children11040497lukovac_serum_2024
  52. #Mantle, D. & Hargreaves, I. (2024). Efficacy and {Safety} of {Coenzyme} {Q10} {Supplementation} in {Neonates}, {Infants} and {Children}: {An} {Overview}. Antioxidants, 13(5), 530. https://doi.org/10.3390/antiox13050530mantle_efficacy_2024
  53. #Valladão, S. et al. (2024). Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: {Current} findings. Neuroscience \& Biobehavioral Reviews, 164, 105771. https://doi.org/10.1016/j.neubiorev.2024.105771valladao_adenosinergic_2024-1
  54. #Jia, Q. et al. (2024). Role of adenosine in the pathophysiology and treatment of attention deficit hyperactivity disorder. Purinergic Signalling. https://doi.org/10.1007/s11302-024-10059-2jia_role_2024
  55. #Patted, P. et al. (2024). Omega-3 fatty acids: a comprehensive scientific review of their sources, functions and health benefits. Future Journal of Pharmaceutical Sciences, 10(1), 94. https://doi.org/10.1186/s43094-024-00667-5patted_omega-3_2024
  56. #Byrne, L. & Guiry, P. (2024). Advances in the {Chemistry} and {Biology} of {Specialised} {Pro}-{Resolving} {Mediators} ({SPMs}). Molecules, 29(10), 2233. https://doi.org/10.3390/molecules29102233byrne_advances_2024
  57. #Galali, Y. et al. (2024). The impact of ketogenic diet on some metabolic and non‐metabolic diseases: {Evidence} from human and animal model experiments. Food Science \& Nutrition, 12(3), 1444--1464. https://doi.org/10.1002/fsn3.3873galali_impact_2024
  58. #Omori, N. et al. (2024). Exogenous ketone bodies and the ketogenic diet as a treatment option for neurodevelopmental disorders. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1485280omori_exogenous_2024
  59. #Konstantinidou, V. & Jamshed, H. (2024). Editorial: {Chrononutrition} and health. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1516940konstantinidou_editorial_2024
  60. #Zinkow, A. et al. (2024). Molecular {Mechanisms} {Linking} {Omega}-3 {Fatty} {Acids} and the {Gut}–{Brain} {Axis}. Molecules, 30(1), 71. https://doi.org/10.3390/molecules30010071zinkow_molecular_2024
  61. #Torske, A. et al. (2024). Mindfulness meditation modulates stress-eating and its neural correlates. Scientific Reports, 14(1), 7294. https://doi.org/10.1038/s41598-024-57687-7torske_mindfulness_2024
  62. #Starck, C. et al. (2024). Mushrooms: a food-based solution to vitamin {D} deficiency to include in dietary guidelines. Frontiers in Nutrition, 11. https://doi.org/10.3389/fnut.2024.1384273starck_mushrooms_2024
  63. #Sugandhi, V. et al. (2024). Pharmacokinetics of vitamin dosage forms: {A} complete overview. Food Science \& Nutrition, 12(1), 48--83. https://doi.org/10.1002/fsn3.3787sugandhi_pharmacokinetics_2024
  64. #Ziaei, S. et al. (2024). A systematic review and meta-analysis of the omega-3 fatty acids effects on brain-derived neurotrophic factor ({BDNF}). Nutritional Neuroscience, 27(7), 715--725. https://doi.org/10.1080/1028415X.2023.2245996ziaei_systematic_2024
  65. #Majou, D. & Dermenghem, A. (2024). {DHA} (omega-3 fatty acid) increases the action of brain-derived neurotrophic factor ({BDNF}). OCL, 31, 1. https://doi.org/10.1051/ocl/2023030majou_dha_2024
  66. #Cazzola, R. et al. (2024). Magnesium: {A} {Defense} {Line} to {Mitigate} {Inflammation} and {Oxidative} {Stress} in {Adipose} {Tissue}. Antioxidants, 13(8), 893. https://doi.org/10.3390/antiox13080893cazzola_magnesium_2024
  67. #Auer, J. et al. (2024). Assessing the digestibility and estimated bioavailability/ bioaccessibility of plant-based proteins and minerals from soy, pea, and faba bean ingredients. LWT, 197, 115893. https://doi.org/10.1016/j.lwt.2024.115893auer_assessing_2024
  68. #Pachter, D. et al. (2024). Glycemic control contributes to the neuroprotective effects of {Mediterranean} and green-{Mediterranean} diets on brain age: the {DIRECT} {PLUS} brain-magnetic resonance imaging randomized controlled trial. The American Journal of Clinical Nutrition, 120(5), 1029--1036. https://doi.org/10.1016/j.ajcnut.2024.09.013pachter_glycemic_2024
  69. #Pachter, D. et al. (2024). Glycemic control contributes to the neuroprotective effects of {Mediterranean} and green-{Mediterranean} diets on brain age: the {DIRECT} {PLUS} brain-magnetic resonance imaging randomized controlled trial. The American Journal of Clinical Nutrition, 120(5), 1029--1036. https://doi.org/10.1016/j.ajcnut.2024.09.013pachter_glycemic_2024-1
  70. #Hwang, S. et al. (2024). Neural {Responses} to {Intranasal} {Oxytocin} in {Youths} {With} {Severe} {Irritability}. American Journal of Psychiatry, 181(4), 291--298. https://doi.org/10.1176/appi.ajp.20230174hwang_neural_2024
  71. #Latoch, A. et al. (2024). Edible {Offal} as a {Valuable} {Source} of {Nutrients} in the {Diet}—{A} {Review}. Nutrients, 16(11), 1609. https://doi.org/10.3390/nu16111609latoch_edible_2024
  72. #Latoch, A. et al. (2024). Edible {Offal} as a {Valuable} {Source} of {Nutrients} in the {Diet}—{A} {Review}. Nutrients, 16(11), 1609. https://doi.org/10.3390/nu16111609latoch_edible_2024-1
  73. #Dufault, R. et al. (2024). Nutritional epigenetics education improves diet and attitude of parents of children with autism or attention deficit/hyperactivity disorder. World Journal of Psychiatry, 14(1), 159--178. https://doi.org/10.5498/wjp.v14.i1.159dufault_nutritional_2024
  74. #Godebo, T. et al. (2024). Occurrence of heavy metals coupled with elevated levels of essential elements in chocolates: {Health} risk assessment. Food Research International, 187, 114360. https://doi.org/10.1016/j.foodres.2024.114360godebo_occurrence_2024
  75. #Hands, J. et al. (2024). A multi-year heavy metal analysis of 72 dark chocolate and cocoa products in the {USA}. Frontiers in Nutrition, 11, 1366231. https://doi.org/10.3389/fnut.2024.1366231hands_multi-year_2024
  76. #LaFata, E. et al. (2024). Ultra-{Processed} {Food} {Addiction}: {A} {Research} {Update}. Current Obesity Reports, 13(2), 214--223. https://doi.org/10.1007/s13679-024-00569-wlafata_ultra-processed_2024
  77. #Edna Hee, P. et al. (2024). Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control, 158, 110236. https://doi.org/10.1016/j.foodcont.2023.110236edna_hee_formation_2024
  78. # (2024). Nutrition and {Psychiatric} {Disorders}: {An} {Evidence}-{Based} {Approach} to {Understanding} the {Diet}-{Brain} {Connection}. Singapore: Springer Nature Singapore.mohamed_nutrition_2024
  79. #Aragão, M. et al. (2024). Revitalising {Riboflavin}: {Unveiling} {Its} {Timeless} {Significance} in {Human} {Physiology} and {Health}. Foods, 13(14), 2255. https://doi.org/10.3390/foods13142255aragao_revitalising_2024
  80. #Wimberley, T. et al. (2024). Shared familial risk for type 2 diabetes mellitus and psychiatric disorders: a nationwide multigenerational genetics study. Psychological Medicine, 54(11), 2976--2985. https://doi.org/10.1017/S0033291724001053wimberley_shared_2024
  81. #Sinha, A. et al. (2024). Dietary fibre directs microbial tryptophan metabolism via metabolic interactions in the gut microbiota. Nature Microbiology, 9(8), 1964--1978. https://doi.org/10.1038/s41564-024-01737-3sinha_dietary_2024
  82. #Kramer, D. & Johnson, A. (2024). Apigenin: a natural molecule at the intersection of sleep and aging. Frontiers in Nutrition, 11, 1359176. https://doi.org/10.3389/fnut.2024.1359176kramer_apigenin_2024
  83. #Chmielarz, M. et al. (2024). Metabolic {Endotoxemia}: {From} the {Gut} to {Neurodegeneration}. International Journal of Molecular Sciences, 25(13), 7006. https://doi.org/10.3390/ijms25137006chmielarz_metabolic_2024
  84. #Batey, L. et al. (2024). Lipopolysaccharide {Effects} on {Neurotransmission}: {Understanding} {Implications} for {Depression}. ACS Chemical Neuroscience, 15(24), 4339--4347. https://doi.org/10.1021/acschemneuro.4c00591batey_lipopolysaccharide_2024
  85. # (2024). Nutrition and {Psychiatric} {Disorders}: {An} {Evidence}-{Based} {Approach} to {Understanding} the {Diet}-{Brain} {Connection}. Singapore: Springer Nature Singapore.mohamed_nutrition_2024-1
  86. #Steckler, R. et al. (2024). Disrupted gut harmony in attention-deficit/hyperactivity disorder: {Dysbiosis} and decreased short-chain fatty acids. Brain, Behavior, \& Immunity - Health, 40, 100829. https://doi.org/10.1016/j.bbih.2024.100829steckler_disrupted_2024-3
  87. #Valladão, S. et al. (2024). Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: {Current} findings. Neuroscience \& Biobehavioral Reviews, 164, 105771. https://doi.org/10.1016/j.neubiorev.2024.105771valladao_adenosinergic_2024-2
  88. #Steckler, R. et al. (2024). Disrupted gut harmony in attention-deficit/hyperactivity disorder: {Dysbiosis} and decreased short-chain fatty acids. Brain, Behavior, \& Immunity - Health, 40, 100829. https://doi.org/10.1016/j.bbih.2024.100829steckler_disrupted_2024-4
  89. #Kurokawa, S. et al. (2024). A comparative study on dietary diversity and gut microbial diversity in children with autism spectrum disorder, attention‐deficit hyperactivity disorder, their neurotypical siblings, and non‐related neurotypical volunteers: a cross‐sectional study. Journal of Child Psychology and Psychiatry, 65(9), 1184--1195. https://doi.org/10.1111/jcpp.13962kurokawa_comparative_2024-2
  90. #Li, Y. et al. (2024). Sodium butyrate alleviates lead-induced neuroinflammation and improves cognitive and memory impairment through the {ACSS2}/{H3K9ac}/{BDNF} pathway. Environment International, 184, 108479. https://doi.org/10.1016/j.envint.2024.108479li_sodium_2024-3
  91. #Chen, J. et al. (2024). Exploring causal associations of antioxidants from supplements and diet with attention deficit/hyperactivity disorder in {European} populations: a {Mendelian} randomization analysis. Frontiers in Nutrition, 11, 1415793.chen_exploring_2024-3
  92. #Cataldo, P. et al. (2024). Comprehensive characterization of γ-aminobutyric acid ({GABA}) production by {Levilactobacillus} brevis {CRL} 2013: insights from physiology, genomics, and proteomics. Frontiers in Microbiology, 15. https://doi.org/10.3389/fmicb.2024.1408624cataldo_comprehensive_2024-1
  93. #Jakobi, B. et al. (2024). The gut-microbiome in adult {Attention}-deficit/hyperactivity disorder - {A} {Meta}-analysis. European Neuropsychopharmacology, 88, 21--29. https://doi.org/10.1016/j.euroneuro.2024.07.004jakobi_gut-microbiome_2024-1
  94. #Takahashi, N. et al. (2024). Association between genetic risk of melatonin secretion and attention deficit hyperactivity disorder. Psychiatry Research Communications, 4(3), 100188. https://doi.org/10.1016/j.psycom.2024.100188takahashi_association_2024
  95. #Nsabimana, S. et al. (2024). Enhancing iron and zinc bioavailability in maize ({Zea} mays) through phytate reduction: the impact of fermentation alone and in combination with soaking and germination. Frontiers in Nutrition, 11, 1478155. https://doi.org/10.3389/fnut.2024.1478155nsabimana_enhancing_2024
  96. #Allahyari, P. et al. (2024). A systematic review of the beneficial effects of prebiotics, probiotics, and synbiotics on {\textless}span style="font-variant:small-caps;"{\textgreater}{ADHD}{\textless}/span{\textgreater}. Neuropsychopharmacology Reports, 44(2), 300--307. https://doi.org/10.1002/npr2.12437allahyari_systematic_2024
  97. #Hou, Y. et al. (2024). Urolithin {A} improves {Alzheimer}'s disease cognition and restores mitophagy and lysosomal functions. Alzheimer's \& Dementia, 20(6), 4212--4233. https://doi.org/10.1002/alz.13847hou_urolithin_2024
  98. #Taş, E. & Ülgen, K. (2023). Understanding the {ADHD}-{Gut} {Axis} by {Metabolic} {Network} {Analysis}. Metabolites, 13(5), 592. https://doi.org/10.3390/metabo13050592tas_understanding_2023
  99. #Leffa, D. et al. (2023). Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of {Alzheimer}’s disease pathophysiology in cognitively unimpaired older adults. Molecular Psychiatry, 28(3), 1248--1255. https://doi.org/10.1038/s41380-022-01867-2leffa_genetic_2023
  100. #Taş, E. & Ülgen, K. (2023). Understanding the {ADHD}-{Gut} {Axis} by {Metabolic} {Network} {Analysis}. Metabolites, 13(5), 592. https://doi.org/10.3390/metabo13050592tas_understanding_2023-1
  101. #Barnes, L. et al. (2023). Trial of the {MIND} {Diet} for {Prevention} of {Cognitive} {Decline} in {Older} {Persons}. New England Journal of Medicine, 389(7), 602--611. https://doi.org/10.1056/NEJMoa2302368barnes_trial_2023
  102. #Yeo, J. (2023). Influence of food-derived bioactives on gut microbiota compositions and their metabolites by focusing on neurotransmitters. Food Science and Biotechnology, 32(8), 1019--1027. https://doi.org/10.1007/s10068-023-01293-2yeo_influence_2023
  103. #Grüter, T. et al. (2023). Propionate exerts neuroprotective and neuroregenerative effects in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2216941120. https://doi.org/10.1073/pnas.2216941120gruter_propionate_2023
  104. #Sonuga‐Barke, E. et al. (2023). Annual {Research} {Review}: {Perspectives} on progress in {ADHD} science–from characterization to cause. Journal of child psychology and psychiatry, 64(4), 506--532.sonugabarke_annual_2023
  105. #Sonuga‐Barke, E. et al. (2023). Annual {Research} {Review}: {Perspectives} on progress in {ADHD} science–from characterization to cause. Journal of child psychology and psychiatry, 64(4), 506--532.sonugabarke_annual_2023-1
  106. #Leffa, D. et al. (2023). Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of {Alzheimer}’s disease pathophysiology in cognitively unimpaired older adults. Molecular Psychiatry, 28(3), 1248--1255. https://doi.org/10.1038/s41380-022-01867-2leffa_genetic_2023-1
  107. #Sonuga‐Barke, E. et al. (2023). Annual {Research} {Review}: {Perspectives} on progress in {ADHD} science–from characterization to cause. Journal of child psychology and psychiatry, 64(4), 506--532.sonugabarke_annual_2023-2
  108. #Grüter, T. et al. (2023). Propionate exerts neuroprotective and neuroregenerative effects in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2216941120. https://doi.org/10.1073/pnas.2216941120gruter_propionate_2023-1
  109. #Yeo, J. (2023). Influence of food-derived bioactives on gut microbiota compositions and their metabolites by focusing on neurotransmitters. Food Science and Biotechnology, 32(8), 1019--1027. https://doi.org/10.1007/s10068-023-01293-2yeo_influence_2023-1
  110. #Taş, E. & Ülgen, K. (2023). Understanding the {ADHD}-{Gut} {Axis} by {Metabolic} {Network} {Analysis}. Metabolites, 13(5), 592. https://doi.org/10.3390/metabo13050592tas_understanding_2023-2
  111. #Bundgaard-Nielsen, C. et al. (2023). Children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorder share distinct microbiota compositions. Gut Microbes, 15(1). https://doi.org/10.1080/19490976.2023.2211923bundgaard-nielsen_children_2023
  112. #Frias, J. et al. (2023). A microbiome‐targeting fibre‐enriched nutritional formula is well tolerated and improves quality of life and haemoglobin {A1c} in type 2 diabetes: {A} {\textless}scp{\textgreater}double‐blind{\textless}/scp{\textgreater} , randomized, {\textless}scp{\textgreater}placebo‐controlled{\textless}/scp{\textgreater} trial. Diabetes, Obesity and Metabolism, 25(5), 1203--1212. https://doi.org/10.1111/dom.14967frias_microbiometargeting_2023
  113. #Antony, M. et al. (2023). Gut microbiome supplementation as therapy for metabolic syndrome. World Journal of Diabetes, 14(10), 1502--1513. https://doi.org/10.4239/wjd.v14.i10.1502antony_gut_2023
  114. #Mysore Saiprasad, S. et al. (2023). A {Narrative} {Review} of {Human} {Clinical} {Trials} to {Improve} {Lactose} {Digestion} and {Tolerance} by {Feeding} {Bifidobacteria} or {Galacto}-{Oligosacharides}. Nutrients, 15(16), 3559. https://doi.org/10.3390/nu15163559mysore_saiprasad_narrative_2023
  115. #Pannerchelvan, S. et al. (2023). Strategies for improvement of gamma-aminobutyric acid ({GABA}) biosynthesis \textit{via} lactic acid bacteria ({LAB}) fermentation. Food \& Function, 14(9), 3929--3948. https://doi.org/10.1039/D2FO03936Bpannerchelvan_strategies_2023
  116. #Aran, K. & Singh, S. (2023). Mitochondrial dysfunction and oxidative stress in {Alzheimer}'s disease–{A} step towards mitochondria based therapeutic strategies. Aging and Health Research, 3(4), 100169. https://doi.org/10.1016/j.ahr.2023.100169aran_mitochondrial_2023
  117. #Song, Y. et al. (2023). Mitochondrial dysfunction: {A} fatal blow in depression. Biomedicine \& Pharmacotherapy, 167, 115652. https://doi.org/10.1016/j.biopha.2023.115652song_mitochondrial_2023
  118. #Henrich, M. et al. (2023). Mitochondrial dysfunction in {Parkinson}’s disease – a key disease hallmark with therapeutic potential. Molecular Neurodegeneration, 18(1), 83. https://doi.org/10.1186/s13024-023-00676-7henrich_mitochondrial_2023
  119. #Li, J. et al. (2023). Function of {Akkermansia} muciniphila in type 2 diabetes and related diseases. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1172400li_function_2023
  120. #Joo, M. et al. (2023). Effects of very low-carbohydrate ketogenic diets on lipid profiles in normal-weight (body mass index \< 25 kg/m2) adults: a meta-analysis. Nutrition Reviews, 81(11), 1393--1401. https://doi.org/10.1093/nutrit/nuad017joo_effects_2023
  121. #Ogutlu, H. et al. (2023). Mitochondrial {Dysfunction} in {Attention} {Deficit} {Hyperactivity} {Disorder}. The Eurasian Journal of Medicine, 54(Supp1), S187--S195. https://doi.org/10.5152/eurasianjmed.2022.22187ogutlu_mitochondrial_2023
  122. #Amini, F. et al. (2023). Hydroalcoholic extract of {Passiflora} incarnata improves the autistic-like behavior and neuronal damage in a valproic acid-induced rat model of autism. Journal of Traditional and Complementary Medicine, 13(4), 315--324. https://doi.org/10.1016/j.jtcme.2023.02.005amini_hydroalcoholic_2023
  123. #Blasco-Fontecilla, H. (2023). Is {Histamine} and {Not} {Acetylcholine} the {Missing} {Link} between {ADHD} and {Allergies}? {Speer} {Allergic} {Tension} {Fatigue} {Syndrome} {Re}-{Visited}. Journal of Clinical Medicine, 12(16), 5350. https://doi.org/10.3390/jcm12165350blasco-fontecilla_is_2023
  124. #Derbyshire, E. & Maes, M. (2023). The {Role} of {Choline} in {Neurodevelopmental} {Disorders}—{A} {Narrative} {Review} {Focusing} on {ASC}, {ADHD} and {Dyslexia}. Nutrients, 15(13), 2876. https://doi.org/10.3390/nu15132876derbyshire_role_2023
  125. #Badaeva, A. et al. (2023). Perspectives on {Neuronutrition} in {Prevention} and {Treatment} of {Neurological} {Disorders}. Nutrients, 15(11), 2505. https://doi.org/10.3390/nu15112505badaeva_perspectives_2023
  126. #Lacasa, M. et al. (2023). Yeast {Beta}-{Glucan} {Supplementation} with {Multivitamins} {Attenuates} {Cognitive} {Impairments} in {Individuals} with {Myalgic} {Encephalomyelitis}/{Chronic} {Fatigue} {Syndrome}: {A} {Randomized}, {Double}-{Blind}, {Placebo}-{Controlled} {Trial}. Nutrients, 15(21), 4504. https://doi.org/10.3390/nu15214504lacasa_yeast_2023
  127. #Walther, A. et al. (2023). Depressive symptoms are negatively associated with hair {N}-arachidonoylethanolamine (anandamide) levels: {A} cross-lagged panel analysis of four annual assessment waves examining hair endocannabinoids and cortisol. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 121, 110658. https://doi.org/10.1016/j.pnpbp.2022.110658walther_depressive_2023
  128. #Mock, E. et al. (2023). Anandamide and other {N}-acylethanolamines: {A} class of signaling lipids with therapeutic opportunities. Progress in Lipid Research, 89, 101194. https://doi.org/10.1016/j.plipres.2022.101194mock_anandamide_2023
  129. #Dinu, L. et al. (2023). The effects of tryptophan loading on {Attention} {Deficit} {Hyperactivity} in adults: {A} remote double blind randomised controlled trial. PLOS ONE, 18(11), e0294911. https://doi.org/10.1371/journal.pone.0294911dinu_effects_2023
  130. #French, B. et al. (2023). The impact of sleep difficulties in children with attention deficit hyperactivity disorder on the family: a thematic analysis. Journal of Clinical Sleep Medicine, 19(10), 1735--1741. https://doi.org/10.5664/jcsm.10662french_impact_2023
  131. #Checa-Ros, A. et al. (2023). Low {Doses} of {Melatonin} to {Improve} {Sleep} in {Children} with {ADHD}: {An} {Open}-{Label} {Trial}. Children, 10(7), 1121. https://doi.org/10.3390/children10071121checa-ros_low_2023
  132. #Trommelen, J. et al. (2023). The anabolic response to protein ingestion during recovery from exercise has no upper limit in magnitude and duration {\textless}em{\textgreater}in\&\#xa0;vivo{\textless}/em{\textgreater} in humans. Cell Reports Medicine, 4(12). https://doi.org/10.1016/j.xcrm.2023.101324trommelen_anabolic_2023
  133. #Barnes, L. et al. (2023). Trial of the {MIND} {Diet} for {Prevention} of {Cognitive} {Decline} in {Older} {Persons}. New England Journal of Medicine, 389(7), 602--611. https://doi.org/10.1056/NEJMoa2302368barnes_trial_2023-1
  134. #Jue, H. et al. (2023). A bidirectional {Mendelian} randomization study about the role of morning plasma cortisol in attention deficit hyperactivity disorder. Frontiers in Psychiatry, 14. https://doi.org/10.3389/fpsyt.2023.1148759jue_bidirectional_2023
  135. #Lopez, F. et al. (2023). Frontal adenosine triphosphate markers from {31P} {MRS} are associated with cognitive performance in healthy older adults: preliminary findings. Frontiers in Aging Neuroscience, 15. https://doi.org/10.3389/fnagi.2023.1180994lopez_frontal_2023
  136. #{NHS.gov} (2023). {NHS} {Fat} recommendations. .nhsgov_nhs_2023
  137. #Li, L. et al. (2023). Attention‐deficit/hyperactivity disorder is associated with increased risk of cardiovascular diseases: {A} systematic review and meta‐analysis. JCPP Advances, 3(3). https://doi.org/10.1002/jcv2.12158li_attentiondeficithyperactivity_2023
  138. #Shannon, O. et al. (2023). Mediterranean diet adherence is associated with lower dementia risk, independent of genetic predisposition: findings from the {UK} {Biobank} prospective cohort study. BMC Medicine, 21(1), 81. https://doi.org/10.1186/s12916-023-02772-3shannon_mediterranean_2023
  139. #de Crom, T. et al. (2023). Plant-based dietary patterns and the risk of dementia: a population-based study. Age and Ageing, 52(9). https://doi.org/10.1093/ageing/afad178de_crom_plant-based_2023
  140. #van Soest, A. et al. (2023). The association between adherence to a plant-based diet and cognitive ageing. European Journal of Nutrition, 62(5), 2053--2062. https://doi.org/10.1007/s00394-023-03130-yvan_soest_association_2023
  141. #Tezze, C. et al. (2023). Anabolic {Resistance} in the {Pathogenesis} of {Sarcopenia} in the {Elderly}: {Role} of {Nutrition} and {Exercise} in {Young} and {Old} {People}. Nutrients, 15(18), 4073. https://doi.org/10.3390/nu15184073tezze_anabolic_2023
  142. #Agarwal, P. et al. (2023). Association of {Mediterranean}-{DASH} {Intervention} for {Neurodegenerative} {Delay} and {Mediterranean} {Diets} {With} {Alzheimer} {Disease} {Pathology}. Neurology, 100(22). https://doi.org/10.1212/WNL.0000000000207176agarwal_association_2023
  143. #Houldsworth, A. (2023). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Communications, 6(1). https://doi.org/10.1093/braincomms/fcad356houldsworth_role_2023
  144. #Brown, E. et al. (2023). Gut microbiome lipid metabolism and its impact on host physiology. Cell Host \& Microbe, 31(2), 173--186. https://doi.org/10.1016/j.chom.2023.01.009brown_gut_2023
  145. #Brown, E. et al. (2023). Gut microbiome lipid metabolism and its impact on host physiology. Cell Host \& Microbe, 31(2), 173--186. https://doi.org/10.1016/j.chom.2023.01.009brown_gut_2023-1
  146. #Yu, X. et al. (2023). Advancements in precision nutrition: {Steady}‐state targeted delivery of food functional factors for nutrition intervention of chronic diseases. Food Safety and Health, 1(1), 22--40. https://doi.org/10.1002/fsh3.12006yu_advancements_2023
  147. #Liu, L. et al. (2023). Mitochondria-wide association study observed significant interactions of mitochondrial respiratory and the inflammatory in the development of anxiety and depression. Translational Psychiatry, 13(1), 216. https://doi.org/10.1038/s41398-023-02518-yliu_mitochondria-wide_2023
  148. #Mrowicka, M. et al. (2023). The importance of thiamine (vitamin {B1}) in humans. Bioscience Reports, 43(10), BSR20230374. https://doi.org/10.1042/BSR20230374mrowicka_importance_2023
  149. #Mrowicka, M. et al. (2023). The importance of thiamine (vitamin {B1}) in humans. Bioscience Reports, 43(10), BSR20230374. https://doi.org/10.1042/BSR20230374mrowicka_importance_2023-1
  150. #Zheng, Y. et al. (2023). Probiotics fortify intestinal barrier function: a systematic review and meta-analysis of randomized trials. Frontiers in Immunology, 14, 1143548. https://doi.org/10.3389/fimmu.2023.1143548zheng_probiotics_2023
  151. #Leffa, D. et al. (2023). Genetic risk for attention-deficit/hyperactivity disorder predicts cognitive decline and development of {Alzheimer}’s disease pathophysiology in cognitively unimpaired older adults. Molecular Psychiatry, 28(3), 1248--1255. https://doi.org/10.1038/s41380-022-01867-2leffa_genetic_2023-2
  152. #Yeo, J. (2023). Influence of food-derived bioactives on gut microbiota compositions and their metabolites by focusing on neurotransmitters. Food Science and Biotechnology, 32(8), 1019--1027. https://doi.org/10.1007/s10068-023-01293-2yeo_influence_2023-2
  153. #Grüter, T. et al. (2023). Propionate exerts neuroprotective and neuroregenerative effects in the peripheral nervous system. Proceedings of the National Academy of Sciences of the United States of America, 120(4), e2216941120. https://doi.org/10.1073/pnas.2216941120gruter_propionate_2023-2
  154. #Sonuga‐Barke, E. et al. (2023). Annual {Research} {Review}: {Perspectives} on progress in {ADHD} science–from characterization to cause. Journal of child psychology and psychiatry, 64(4), 506--532.sonugabarke_annual_2023-3
  155. #Bundgaard-Nielsen, C. et al. (2023). Children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorder share distinct microbiota compositions. Gut Microbes, 15(1). https://doi.org/10.1080/19490976.2023.2211923bundgaard-nielsen_children_2023-1
  156. #Frias, J. et al. (2023). A microbiome‐targeting fibre‐enriched nutritional formula is well tolerated and improves quality of life and haemoglobin {A1c} in type 2 diabetes: {A} {\textbackslash}textlessscp{\textbackslash}textgreaterdouble‐blind{\textbackslash}textless/scp{\textbackslash}textgreater , randomized, {\textbackslash}textlessscp{\textbackslash}textgreaterplacebo‐controlled{\textbackslash}textless/scp{\textbackslash}textgreater trial. Diabetes, Obesity and Metabolism, 25(5), 1203--1212. https://doi.org/10.1111/dom.14967frias_microbiometargeting_2023-1
  157. #Aran, K. & Singh, S. (2023). Mitochondrial dysfunction and oxidative stress in {Alzheimer}'s disease–{A} step towards mitochondria based therapeutic strategies. Aging and Health Research, 3(4), 100169. https://doi.org/10.1016/j.ahr.2023.100169aran_mitochondrial_2023-1
  158. #Song, Y. et al. (2023). Mitochondrial dysfunction: {A} fatal blow in depression. Biomedicine \& Pharmacotherapy, 167, 115652. https://doi.org/10.1016/j.biopha.2023.115652song_mitochondrial_2023-1
  159. #Young, I. et al. (2023). Distribution of energy intake across the day and weight loss: {A} systematic review and meta‐analysis. Obesity Reviews, 24(3), e13537. https://doi.org/10.1111/obr.13537young_distribution_2023
  160. #Franzago, M. et al. (2023). Chrono-{Nutrition}: {Circadian} {Rhythm} and {Personalized} {Nutrition}. International Journal of Molecular Sciences, 24(3), 2571. https://doi.org/10.3390/ijms24032571franzago_chrono-nutrition_2023
  161. #Liu, J. et al. (2023). The {Effect} of {Early} {Time}-{Restricted} {Eating} vs {Later} {Time}-{Restricted} {Eating} on {Weight} {Loss} and {Metabolic} {Health}. The Journal of Clinical Endocrinology \& Metabolism, 108(7), 1824--1834. https://doi.org/10.1210/clinem/dgad036liu_effect_2023
  162. #Tani, Y. et al. (2023). Allulose for the attenuation of postprandial blood glucose levels in healthy humans: {A} systematic review and meta-analysis. PLOS ONE, 18(4), e0281150. https://doi.org/10.1371/journal.pone.0281150tani_allulose_2023
  163. #Gruber, J. et al. (2023). Impact of insulin and insulin resistance on brain dopamine signalling and reward processing – {An} underexplored mechanism in the pathophysiology of depression?. Neuroscience \& Biobehavioral Reviews, 149, 105179. https://doi.org/10.1016/j.neubiorev.2023.105179gruber_impact_2023
  164. #Pires, S. et al. (2023). Phytates as a natural source for health promotion: {A} critical evaluation of clinical trials. Frontiers in Chemistry, 11, 1174109. https://doi.org/10.3389/fchem.2023.1174109pires_phytates_2023
  165. #Houldsworth, A. (2023). Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Communications, 6(1), fcad356. https://doi.org/10.1093/braincomms/fcad356houldsworth_role_2023-1
  166. #Miniksar, D. et al. (2023). The {Effect} of {Drug} {Use}, {Body} {Mass} {Index} and {Blood} {Pressure} on {Oxidative} {Stress} {Levels} in {Children} and {Adolescents} with {Attention} {Deficit} and {Hyperactivity} {Disorder}. Clinical Psychopharmacology and Neuroscience, 21(1), 88--98. https://doi.org/10.9758/cpn.2023.21.1.88miniksar_effect_2023
  167. #Kyriazis, I. et al. (2022). The impact of diet upon mitochondrial physiology ({Review}). International Journal of Molecular Medicine, 50(5), 135. https://doi.org/10.3892/ijmm.2022.5191kyriazis_impact_2022
  168. #Austelle, C. et al. (2022). A {Comprehensive} {Review} of {Vagus} {Nerve} {Stimulation} for {Depression}. Neuromodulation: Technology at the Neural Interface, 25(3), 309--315. https://doi.org/10.1111/ner.13528austelle_comprehensive_2022
  169. #Qian, X. et al. (2022). Mechanisms of {Short}-{Chain} {Fatty} {Acids} {Derived} from {Gut} {Microbiota} in {Alzheimer}'s {Disease}. Aging and Disease, 13(4), 1252--1266. https://doi.org/10.14336/AD.2021.1215qian_mechanisms_2022
  170. #Gao, R. et al. (2022). Protein intake from different sources and cognitive decline over 9 years in community-dwelling older adults. Frontiers in Public Health, 10, 1016016. https://doi.org/10.3389/fpubh.2022.1016016gao_protein_2022
  171. #Yeh, T. et al. (2022). Long-term dietary protein intake and subjective cognitive decline in {US} men and women. The American Journal of Clinical Nutrition, 115(1), 199--210. https://doi.org/10.1093/ajcn/nqab236yeh_long-term_2022
  172. #Cavaliere, G. et al. (2022). Butyrate {Improves} {Neuroinflammation} and {Mitochondrial} {Impairment} in {Cerebral} {Cortex} and {Synaptic} {Fraction} in an {Animal} {Model} of {Diet}-{Induced} {Obesity}. Antioxidants, 12(1), 4. https://doi.org/10.3390/antiox12010004cavaliere_butyrate_2022
  173. #Wang, L. et al. (2022). Effect of {Bifidobacterium} bifidum on {Clinical} {Characteristics} and {Gut} {Microbiota} in {Attention}-{Deficit}/{Hyperactivity} {Disorder}. Journal of Personalized Medicine, 12(2), 227. https://doi.org/10.3390/jpm12020227wang_effect_2022
  174. #Qian, X. et al. (2022). Mechanisms of {Short}-{Chain} {Fatty} {Acids} {Derived} from {Gut} {Microbiota} in {Alzheimer}'s {Disease}. Aging and Disease, 13(4), 1252--1266. https://doi.org/10.14336/AD.2021.1215qian_mechanisms_2022-1
  175. #Wang, L. et al. (2022). Effect of {Bifidobacterium} bifidum on {Clinical} {Characteristics} and {Gut} {Microbiota} in {Attention}-{Deficit}/{Hyperactivity} {Disorder}. Journal of Personalized Medicine, 12(2), 227. https://doi.org/10.3390/jpm12020227wang_effect_2022-1
  176. #Cavaliere, G. et al. (2022). Butyrate {Improves} {Neuroinflammation} and {Mitochondrial} {Impairment} in {Cerebral} {Cortex} and {Synaptic} {Fraction} in an {Animal} {Model} of {Diet}-{Induced} {Obesity}. Antioxidants, 12(1), 4. https://doi.org/10.3390/antiox12010004cavaliere_butyrate_2022-1
  177. #Yeh, T. et al. (2022). Long-term dietary protein intake and subjective cognitive decline in {US} men and women. The American Journal of Clinical Nutrition, 115(1), 199--210. https://doi.org/10.1093/ajcn/nqab236yeh_long-term_2022-1
  178. #Austelle, C. et al. (2022). A {Comprehensive} {Review} of {Vagus} {Nerve} {Stimulation} for {Depression}. Neuromodulation: Technology at the Neural Interface, 25(3), 309--315. https://doi.org/10.1111/ner.13528austelle_comprehensive_2022-1
  179. #Kyriazis, I. et al. (2022). The impact of diet upon mitochondrial physiology ({Review}). International Journal of Molecular Medicine, 50(5), 135. https://doi.org/10.3892/ijmm.2022.5191kyriazis_impact_2022-1
  180. #Gasmi, A. et al. (2022). Neurotransmitters {Regulation} and {Food} {Intake}: {The} {Role} of {Dietary} {Sources} in {Neurotransmission}. Molecules, 28(1), 210. https://doi.org/10.3390/molecules28010210gasmi_neurotransmitters_2022
  181. # (2022). The protective effect of relative carbohydrate intake on depression. Nature Human Behaviour, 6(11), 1452--1453. https://doi.org/10.1038/s41562-022-01413-8noauthor_protective_2022
  182. #Hours, C. et al. (2022). {ASD} and {ADHD} {Comorbidity}: {What} {Are} {We} {Talking} {About}?. Frontiers in Psychiatry, 13. https://doi.org/10.3389/fpsyt.2022.837424hours_asd_2022
  183. #Pouille, C. et al. (2022). Chicory: {Understanding} the {Effects} and {Effectors} of {This} {Functional} {Food}. Nutrients, 14(5), 957. https://doi.org/10.3390/nu14050957pouille_chicory_2022
  184. #Fuloria, S. et al. (2022). Genistein: {A} {Potential} {Natural} {Lead} {Molecule} for {New} {Drug} {Design} and {Development} for {Treating} {Memory} {Impairment}. Molecules, 27(1), 265. https://doi.org/10.3390/molecules27010265fuloria_genistein_2022
  185. #Meng, X. et al. (2022). Association between {MTHFR} ({677C}\>{T} and {1298A}\>{C}) polymorphisms and psychiatric disorder: {A} meta-analysis. PLOS ONE, 17(7), e0271170. https://doi.org/10.1371/journal.pone.0271170meng_association_2022
  186. #Lam, N. et al. (2022). The potential use of folate and its derivatives in treating psychiatric disorders: {A} systematic review. Biomedicine \& Pharmacotherapy, 146, 112541. https://doi.org/10.1016/j.biopha.2021.112541lam_potential_2022
  187. #Luzzi, S. et al. (2022). Homocysteine, {Cognitive} {Functions}, and {Degenerative} {Dementias}: {State} of the {Art}. Biomedicines, 10(11), 2741. https://doi.org/10.3390/biomedicines10112741luzzi_homocysteine_2022
  188. #Pinto, S. et al. (2022). Eating {Patterns} and {Dietary} {Interventions} in {ADHD}: {A} {Narrative} {Review}. Nutrients, 14(20), 4332. https://doi.org/10.3390/nu14204332pinto_eating_2022
  189. #Agh, F. et al. (2022). The {Effect} of {Zinc} {Supplementation} on {Circulating} {Levels} of {Brain}-{Derived} {Neurotrophic} {Factor} ({BDNF}). International Journal of Preventive Medicine, 13(1), 117. https://doi.org/10.4103/ijpvm.IJPVM_478_20agh_effect_2022
  190. #Holub}, {. (2022). Alzheimer’s disease, mild cognitive impairment, and the {Mediterranean} diet are all linked to each other. J Neurol Clin Neurosci Vol 6 No 1 January 2022 1.ashley_holub_alzheimers_2022
  191. #Clark}, {. (2022). Can {Diet} {Help} {Athletes} {Manage} {ADHD}?. .nancy_clark_can_2022
  192. #Darabi, Z. et al. (2022). Adherence to {Mediterranean} diet and attention-deficit/hyperactivity disorder in children: {A} case control study. Clinical Nutrition ESPEN, 47, 346--350. https://doi.org/10.1016/j.clnesp.2021.11.014darabi_adherence_2022
  193. #Rangan, P. et al. (2022). Fasting-mimicking diet cycles reduce neuroinflammation to attenuate cognitive decline in {Alzheimer}’s models. Cell Reports, 40(13), 111417. https://doi.org/10.1016/j.celrep.2022.111417rangan_fasting-mimicking_2022
  194. #Kumar, N. et al. (2022). Adherence to {Low}-{Carbohydrate} {Diets} in {Patients} with {Diabetes}: {A} {Narrative} {Review}. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, Volume 15, 477--498. https://doi.org/10.2147/DMSO.S292742kumar_adherence_2022
  195. #Carpena, M. et al. (2022). Stress-related genetic components in attention-deficit/hyperactivity disorder ({ADHD}): {Effects} of the {SERPINA6} and {SERPINA1} genetic markers in a family-based brazilian sample. Journal of Psychiatric Research, 149, 1--9. https://doi.org/10.1016/j.jpsychires.2022.02.014carpena_stress-related_2022
  196. #Zalachoras, I. et al. (2022). Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife, 11. https://doi.org/10.7554/eLife.77791zalachoras_glutathione_2022
  197. #Tang, H. et al. (2022). Vitamin {K2} {Modulates} {Mitochondrial} {Dysfunction} {Induced} by 6-{Hydroxydopamine} in {SH}-{SY5Y} {Cells} via {Mitochondrial} {Quality}-{Control} {Loop}. Nutrients, 14(7), 1504. https://doi.org/10.3390/nu14071504tang_vitamin_2022
  198. #Tsai, J. et al. (2022). Taiwanese {Vegetarians} {Are} {Associated} with {Lower} {Dementia} {Risk}: {A} {Prospective} {Cohort} {Study}. Nutrients, 14(3), 588. https://doi.org/10.3390/nu14030588tsai_taiwanese_2022
  199. #Coelho-Junior, H. et al. (2022). Protein {Intake} and {Sarcopenia} in {Older} {Adults}: {A} {Systematic} {Review} and {Meta}-{Analysis}. International Journal of Environmental Research and Public Health, 19(14), 8718. https://doi.org/10.3390/ijerph19148718coelho-junior_protein_2022
  200. #Gumus, C. et al. (2022). Increased {Serum} {Brain}-derived {Neurotrophic} {Factor}, {Nerve} {Growth} {Factor}, {Glial}-derived {Neurotrophic} {Factor} and {Galanin} {Levels} in {Children} with {Attention} {Deficit} {Hyperactivity} {Disorder}, and the {Effect} of 10 {Weeks} {Methylphenidate} {Treatment}. Clinical Psychopharmacology and Neuroscience, 20(4), 635--648. https://doi.org/10.9758/cpn.2022.20.4.635gumus_increased_2022
  201. #de Oliveira, V. et al. (2022). Parsley ({Petroselinum} crispum {Mill}.): {A} source of bioactive compounds as a domestic strategy to minimize cholesterol oxidation during the thermal preparation of omelets. Food Research International, 156, 111199. https://doi.org/10.1016/j.foodres.2022.111199de_oliveira_parsley_2022
  202. #Katonova, A. et al. (2022). Effect of a {Vegan} {Diet} on {Alzheimer}’s {Disease}. International Journal of Molecular Sciences, 23(23), 14924. https://doi.org/10.3390/ijms232314924katonova_effect_2022
  203. #Li, L. et al. (2022). Attention‐deficit/hyperactivity disorder as a risk factor for cardiovascular diseases: a nationwide population‐based cohort study. World Psychiatry, 21(3), 452--459. https://doi.org/10.1002/wps.21020li_attentiondeficithyperactivity_2022
  204. #Zelicha, H. et al. (2022). The effect of high-polyphenol {Mediterranean} diet on visceral adiposity: the {DIRECT} {PLUS} randomized controlled trial. BMC Medicine, 20(1), 327. https://doi.org/10.1186/s12916-022-02525-8zelicha_effect_2022
  205. #Singh, A. et al. (2022). Direct supplementation with {Urolithin} {A} overcomes limitations of dietary exposure and gut microbiome variability in healthy adults to achieve consistent levels across the population. European Journal of Clinical Nutrition, 76(2), 297--308. https://doi.org/10.1038/s41430-021-00950-1singh_direct_2022
  206. #Schleupner, H. & Carmichael, M. (2022). Attention-{Deficit}/{Hyperactivity} {Disorder} and the {Gut} {Microbiota}–{Gut}–{Brain} {Axis}: {Closing} {Research} {Gaps} through {Female} {Inclusion} in {Study} {Design}. Women, 2(3), 231--253. https://doi.org/10.3390/women2030023schleupner_attention-deficithyperactivity_2022
  207. #Zhang, L. et al. (2022). Attention‐deficit/hyperactivity disorder and {Alzheimer}'s disease and any dementia: {A} multi‐generation cohort study in {Sweden}. Alzheimer's \& Dementia, 18(6), 1155--1163. https://doi.org/10.1002/alz.12462zhang_attentiondeficithyperactivity_2022
  208. #Kyriazis, I. et al. (2022). The impact of diet upon mitochondrial physiology ({Review}). International Journal of Molecular Medicine, 50(5), 135. https://doi.org/10.3892/ijmm.2022.5191kyriazis_impact_2022-2
  209. #Gasmi, A. et al. (2022). Neurotransmitters {Regulation} and {Food} {Intake}: {The} {Role} of {Dietary} {Sources} in {Neurotransmission}. Molecules, 28(1), 210. https://doi.org/10.3390/molecules28010210gasmi_neurotransmitters_2022-1
  210. #Ryu, S. et al. (2022). Associations between {Dietary} {Intake} and {Attention} {Deficit} {Hyperactivity} {Disorder} ({ADHD}) {Scores} by {Repeated} {Measurements} in {School}-{Age} {Children}. Nutrients, 14(14), 2919. https://doi.org/10.3390/nu14142919ryu_associations_2022
  211. #Di Girolamo, G. et al. (2022). Prevalence of {Metabolic} {Syndrome} and {Insulin} {Resistance} in a {Sample} of {Adult} {ADHD} {Outpatients}. Frontiers in Psychiatry, 13, 891479. https://doi.org/10.3389/fpsyt.2022.891479di_girolamo_prevalence_2022
  212. #Ousaaid, D. et al. (2022). The {Nutritional} and {Antioxidant} {Potential} of {Artisanal} and {Industrial} {Apple} {Vinegars} and {Their} {Ability} to {Inhibit} {Key} {Enzymes} {Related} to {Type} 2 {Diabetes} {In} {Vitro}. Molecules, 27(2), 567. https://doi.org/10.3390/molecules27020567ousaaid_nutritional_2022
  213. #Khoodoruth, M. et al. (2022). Glutamatergic {System} in {Depression} and {Its} {Role} in {Neuromodulatory} {Techniques} {Optimization}. Frontiers in Psychiatry, 13, 886918. https://doi.org/10.3389/fpsyt.2022.886918khoodoruth_glutamatergic_2022
  214. #Shi, J. et al. (2022). Selected lactobacilli strains inhibit inflammation in {LPS}-induced {RAW264}.7 macrophages by suppressing the {TLR4}-mediated {NF}-κ{B} and {MAPKs} activation. Food Science and Technology, 42, e107621. https://doi.org/10.1590/fst.107621shi_selected_2022
  215. #Mayer, E. et al. (2022). The {Gut}–{Brain} {Axis}. Annual Review of Medicine, 73(1), 439--453. https://doi.org/10.1146/annurev-med-042320-014032mayer_gutbrain_2022
  216. #Di Girolamo, G. et al. (2022). Prevalence of {Metabolic} {Syndrome} and {Insulin} {Resistance} in a {Sample} of {Adult} {ADHD} {Outpatients}. Frontiers in Psychiatry, 13, 891479. https://doi.org/10.3389/fpsyt.2022.891479di_girolamo_prevalence_2022-1
  217. #Di Girolamo, G. et al. (2022). Prevalence of {Metabolic} {Syndrome} and {Insulin} {Resistance} in a {Sample} of {Adult} {ADHD} {Outpatients}. Frontiers in Psychiatry, 13, 891479. https://doi.org/10.3389/fpsyt.2022.891479di_girolamo_prevalence_2022-2
  218. #Fanelli, G. et al. (2022). Insulinopathies of the brain? {Genetic} overlap between somatic insulin-related and neuropsychiatric disorders. Translational Psychiatry, 12(1), 59. https://doi.org/10.1038/s41398-022-01817-0fanelli_insulinopathies_2022
  219. #Kyriazis, I. et al. (2022). The impact of diet upon mitochondrial physiology ({Review}). International Journal of Molecular Medicine, 50(5), 135. https://doi.org/10.3892/ijmm.2022.5191kyriazis_impact_2022-3
  220. #Gao, R. et al. (2022). Protein intake from different sources and cognitive decline over 9 years in community-dwelling older adults. Progress in Brain Research, publisher = Elsevier, author = Zaehle, Tino and Krauel, Kerstin, year = 2021, doi = 10.1016/bs.pbr.2021.03.001, pages = 171–190,, 10, 1016016. https://doi.org/10.3389/fpubh.2022.1016016gao_protein_2022-1
  221. #Yeh, T. et al. (2022). Long-term dietary protein intake and subjective cognitive decline in {US} men and women. The American Journal of Clinical Nutrition, 115(1), 199--210. https://doi.org/10.1093/ajcn/nqab236yeh_long-term_2022-2
  222. # (2022). The protective effect of relative carbohydrate intake on depression. Nature Human Behaviour, 6(11), 1452--1453. https://doi.org/10.1038/s41562-022-01413-8noauthor_protective_2022-1
  223. #Takahashi, N. et al. (2022). Exploration of {Sleep} {Parameters}, {Daytime} {Hyperactivity}/{Inattention}, and {Attention}-{Deficit}/{Hyperactivity} {Disorder} {Polygenic} {Risk} {Scores} of {Children} in a {Birth} {Cohort} in {Japan}. JAMA Network Open, 5(1), e2141768. https://doi.org/10.1001/jamanetworkopen.2021.41768takahashi_exploration_2022
  224. #Cecil, C. & Nigg, J. (2022). Epigenetics and {ADHD}: {Reflections} on {Current} {Knowledge}, {Research} {Priorities} and {Translational} {Potential}. Molecular Diagnosis \& Therapy, 26(6), 581--606. https://doi.org/10.1007/s40291-022-00609-ycecil_epigenetics_2022
  225. #Silvani, M. et al. (2022). The influence of blue light on sleep, performance and wellbeing in young adults: {A} systematic review. Frontiers in Physiology, 13, 943108. https://doi.org/10.3389/fphys.2022.943108silvani_influence_2022
  226. #Zaehle, T. & Krauel, K. (2021). Transcutaneous vagus nerve stimulation in patients with attention-deficit/hyperactivity disorder: {A} viable option?.zaehle_transcutaneous_2021
  227. #Checa-Ros, A. et al. (2021). Current {Evidence} on the {Role} of the {Gut} {Microbiome} in {ADHD} {Pathophysiology} and {Therapeutic} {Implications}. Nutrients, 13(1), 249. https://doi.org/10.3390/nu13010249checa-ros_current_2021
  228. #Checa-Ros, A. et al. (2021). Current {Evidence} on the {Role} of the {Gut} {Microbiome} in {ADHD} {Pathophysiology} and {Therapeutic} {Implications}. Nutrients, 13(1), 249. https://doi.org/10.3390/nu13010249checa-ros_current_2021-1
  229. #Mirzaei, R. et al. (2021). Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine \& Pharmacotherapy, 139, 111661. https://doi.org/10.1016/j.biopha.2021.111661mirzaei_role_2021
  230. #Chang, J. et al. (2021). Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder ({ADHD}): evidence from a systematic review with meta-analysis. Translational Psychiatry, 11(1), 430. https://doi.org/10.1038/s41398-021-01550-0chang_cortisol_2021
  231. #Mirzaei, R. et al. (2021). Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine \& Pharmacotherapy, 139, 111661. https://doi.org/10.1016/j.biopha.2021.111661mirzaei_role_2021-1
  232. #Checa-Ros, A. et al. (2021). Current {Evidence} on the {Role} of the {Gut} {Microbiome} in {ADHD} {Pathophysiology} and {Therapeutic} {Implications}. Nutrients, 13(1), 249. https://doi.org/10.3390/nu13010249checa-ros_current_2021-2
  233. #Wastyk, H. et al. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), 4137--4153.e14. https://doi.org/10.1016/j.cell.2021.06.019wastyk_gut-microbiota-targeted_2021
  234. #Bruni, O. et al. (2021). Herbal {Remedies} and {Their} {Possible} {Effect} on the {GABAergic} {System} and {Sleep}. Nutrients, 13(2), 530. https://doi.org/10.3390/nu13020530bruni_herbal_2021
  235. #Basolo, A. et al. (2021). Urinary {Dopamine} {Excretion} {Rate} {Decreases} during {Acute} {Dietary} {Protein} {Deprivation} and {Is} {Associated} with {Increased} {Plasma} {Pancreatic} {Polypeptide} {Concentration}. Nutrients, 13(4), 1234. https://doi.org/10.3390/nu13041234basolo_urinary_2021
  236. #Sukmajaya, A. et al. (2021). Systematic review of gut microbiota and attention-deficit hyperactivity disorder ({ADHD}). Annals of General Psychiatry, 20(1), 12. https://doi.org/10.1186/s12991-021-00330-wsukmajaya_systematic_2021
  237. #Crosby, L. et al. (2021). Ketogenic {Diets} and {Chronic} {Disease}: {Weighing} the {Benefits} {Against} the {Risks}. Frontiers in Nutrition, 8. https://doi.org/10.3389/fnut.2021.702802crosby_ketogenic_2021
  238. #Vásquez-Reyes, S. et al. (2021). Dietary bioactive compounds as modulators of mitochondrial function. The Journal of Nutritional Biochemistry, 96, 108768. https://doi.org/10.1016/j.jnutbio.2021.108768vasquez-reyes_dietary_2021
  239. #Pei-Chen Chang, J. (2021). Personalised medicine in child and {Adolescent} {Psychiatry}: {Focus} on omega-3 polyunsaturated fatty acids and {ADHD}. Brain, Behavior, \& Immunity - Health, 16, 100310. https://doi.org/10.1016/j.bbih.2021.100310pei-chen_chang_personalised_2021
  240. #Halder, N. & Lal, G. (2021). Cholinergic {System} and {Its} {Therapeutic} {Importance} in {Inflammation} and {Autoimmunity}. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.660342halder_cholinergic_2021
  241. #Jia, X. et al. (2021). Association {Between} {Omega}-3 {Fatty} {Acid} {Treatment} and {Atrial} {Fibrillation} in {Cardiovascular} {Outcome} {Trials}: {A} {Systematic} {Review} and {Meta}-{Analysis}. Cardiovascular Drugs and Therapy, 35(4), 793--800. https://doi.org/10.1007/s10557-021-07204-zjia_association_2021
  242. #Oketch-Rabah, H. et al. (2021). United {States} {Pharmacopeia} ({USP}) {Safety} {Review} of {Gamma}-{Aminobutyric} {Acid} ({GABA}). Nutrients, 13(8), 2742. https://doi.org/10.3390/nu13082742oketch-rabah_united_2021
  243. #Colletti, A. et al. (2021). Advances in {Technologies} for {Highly} {Active} {Omega}-3 {Fatty} {Acids} from {Krill} {Oil}: {Clinical} {Applications}. Marine Drugs, 19(6), 306. https://doi.org/10.3390/md19060306colletti_advances_2021
  244. #Garani, R. et al. (2021). Endocannabinoid system in psychotic and mood disorders, a review of human studies. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 106, 110096. https://doi.org/10.1016/J.PNPBP.2020.110096garani_endocannabinoid_2021
  245. #Brunkhorst-Kanaan, N. et al. (2021). Sphingolipid and {Endocannabinoid} {Profiles} in {Adult} {Attention} {Deficit} {Hyperactivity} {Disorder}. Biomedicines, 9(9), 1173. https://doi.org/10.3390/biomedicines9091173brunkhorst-kanaan_sphingolipid_2021
  246. #Cho, Y. & Choi, J. (2021). Association between {Carbohydrate} {Intake} and the {Prevalence} of {Metabolic} {Syndrome} in {Korean} {Women}. Nutrients, 13(9), 3098. https://doi.org/10.3390/nu13093098cho_association_2021
  247. #Chang, J. et al. (2021). Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder ({ADHD}): evidence from a systematic review with meta-analysis. Translational Psychiatry, 11(1), 430. https://doi.org/10.1038/s41398-021-01550-0chang_cortisol_2021-1
  248. #Laksmidewi, A. & Soejitno, A. (2021). Endocannabinoid and dopaminergic system: the pas de deux underlying human motivation and behaviors. Journal of Neural Transmission, 128(5), 615--630. https://doi.org/10.1007/s00702-021-02326-ylaksmidewi_endocannabinoid_2021
  249. #Faraone, S. et al. (2021). The {World} {Federation} of {ADHD} {International} {Consensus} {Statement}: 208 {Evidence}-based conclusions about the disorder. Neuroscience \& Biobehavioral Reviews, 128, 789--818. https://doi.org/10.1016/j.neubiorev.2021.01.022faraone_world_2021
  250. #Liu, T. et al. (2021). Microwave reheating increases the resistant starch content in cooked rice with high water contents. International Journal of Biological Macromolecules, 184, 804--811. https://doi.org/10.1016/j.ijbiomac.2021.06.136liu_microwave_2021
  251. #Jackson, P. et al. (2021). Effects of {Saffron} {Extract} {Supplementation} on {Mood}, {Well}-{Being}, and {Response} to a {Psychosocial} {Stressor} in {Healthy} {Adults}: {A} {Randomized}, {Double}-{Blind}, {Parallel} {Group}, {Clinical} {Trial}. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.606124jackson_effects_2021
  252. #Jackson, P. et al. (2021). Effects of {Saffron} {Extract} {Supplementation} on {Mood}, {Well}-{Being}, and {Response} to a {Psychosocial} {Stressor} in {Healthy} {Adults}: {A} {Randomized}, {Double}-{Blind}, {Parallel} {Group}, {Clinical} {Trial}. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.606124jackson_effects_2021-1
  253. #Daniel, S. et al. (2021). Forty {Years} of {Oxalobacter} formigenes, a {Gutsy} {Oxalate}-{Degrading} {Specialist}. Applied and Environmental Microbiology, 87(18). https://doi.org/10.1128/AEM.00544-21daniel_forty_2021
  254. #Trieu, K. et al. (2021). Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: {A} cohort study, systematic review, and meta-analysis. PLOS Medicine, 18(9), e1003763. https://doi.org/10.1371/journal.pmed.1003763trieu_biomarkers_2021
  255. #Johnstone, N. et al. (2021). Anxiolytic effects of a galacto-oligosaccharides prebiotic in healthy females (18–25 years) with corresponding changes in gut bacterial composition. Scientific Reports, 11(1), 8302. https://doi.org/10.1038/s41598-021-87865-wjohnstone_anxiolytic_2021
  256. #Mamiya, P. et al. (2021). Precision {Medicine} {Care} in {ADHD}: {The} {Case} for {Neural} {Excitation} and {Inhibition}. Brain Sciences, 11(1), 91. https://doi.org/10.3390/brainsci11010091mamiya_precision_2021
  257. #Yagi, A. et al. (2021). Lutein {Has} a {Positive} {Impact} on {Brain} {Health} in {Healthy} {Older} {Adults}: {A} {Systematic} {Review} of {Randomized} {Controlled} {Trials} and {Cohort} {Studies}. Nutrients, 13(6), 1746. https://doi.org/10.3390/nu13061746yagi_lutein_2021
  258. #Bob, P. et al. (2021). Disinhibition of {Primitive} {Reflexes} in {Attention} {Deficit} and {Hyperactivity} {Disorder}: {Insight} {Into} {Specific} {Mechanisms} in {Girls} and {Boys}. Frontiers in Psychiatry, 12, 430685. https://doi.org/10.3389/fpsyt.2021.430685bob_disinhibition_2021
  259. #Mohammad, S. & Thiemermann, C. (2021). Role of {Metabolic} {Endotoxemia} in {Systemic} {Inflammation} and {Potential} {Interventions}. Frontiers in Immunology, 11, 594150. https://doi.org/10.3389/fimmu.2020.594150mohammad_role_2021
  260. #Mirzaei, R. et al. (2021). Role of microbiota-derived short-chain fatty acids in nervous system disorders. Biomedicine \& Pharmacotherapy, 139, 111661. https://doi.org/10.1016/j.biopha.2021.111661mirzaei_role_2021-2
  261. #Chang, J. et al. (2021). Cortisol and inflammatory biomarker levels in youths with attention deficit hyperactivity disorder ({ADHD}): evidence from a systematic review with meta-analysis. Translational Psychiatry, 11(1), 430. https://doi.org/10.1038/s41398-021-01550-0chang_cortisol_2021-2
  262. #Wastyk, H. et al. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), 4137--4153.e14. https://doi.org/10.1016/j.cell.2021.06.019wastyk_gut-microbiota-targeted_2021-1
  263. #Sukmajaya, A. et al. (2021). Systematic review of gut microbiota and attention-deficit hyperactivity disorder ({ADHD}). Annals of General Psychiatry, 20(1), 12. https://doi.org/10.1186/s12991-021-00330-wsukmajaya_systematic_2021-1
  264. #Rygiel, C. et al. (2021). {DNA} methylation at birth potentially mediates the association between prenatal lead ({Pb}) exposure and infant neurodevelopmental outcomes. Environmental Epigenetics, 7(1), dvab005. https://doi.org/10.1093/eep/dvab005rygiel_dna_2021
  265. #Tagawa, R. et al. (2021). Dose–response relationship between protein intake and muscle mass increase: a systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 79(1), 66--75. https://doi.org/10.1093/nutrit/nuaa104tagawa_doseresponse_2021
  266. #Jiang, S. et al. (2021). Dietary {Regulation} of {Oxidative} {Stress} in {Chronic} {Metabolic} {Diseases}. Foods, 10(8), 1854. https://doi.org/10.3390/foods10081854jiang_dietary_2021
  267. #Kurhan, F. & Alp, H. (2021). Dynamic {Thiol}/{Disulfide} {Homeostasis} and {Oxidative} {DNA} {Damage} in {Adult} {Attention} {Deficit} {Hyperactivity} {Disorder}. Clinical Psychopharmacology and Neuroscience, 19(4), 731--738. https://doi.org/10.9758/cpn.2021.19.4.731kurhan_dynamic_2021
  268. #Shi, Y. et al. (2021). Anti-{Oxidation} and {Anti}-{Inflammatory} {Potency} {Evaluation} of {Ferulic} {Acid} {Derivatives} {Obtained} through {Virtual} {Screening}. International Journal of Molecular Sciences, 22(21), 11305. https://doi.org/10.3390/ijms222111305shi_anti-oxidation_2021
  269. #Fanet, H. et al. (2021). Tetrahydrobioterin ({BH4}) {Pathway}: {From} {Metabolism} to {Neuropsychiatry}. Current Neuropharmacology, 19(5), 591--609. https://doi.org/10.2174/1570159X18666200729103529fanet_tetrahydrobioterin_2021
  270. #Wastyk, H. et al. (2021). Gut-microbiota-targeted diets modulate human immune status. Cell, 184(16), 4137--4153.e14. https://doi.org/10.1016/j.cell.2021.06.019wastyk_gut-microbiota-targeted_2021-2
  271. #Bundgaard-Nielsen, C. et al. (2020). Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: {A} systematic literature review.. Gut Microbes, 11(5), 1172--1187. https://doi.org/10.1080/19490976.2020.1748258bundgaard-nielsen_gut_2020
  272. #Chiş, M. et al. (2020). Quinoa {Sourdough} {Fermented} with {Lactobacillus} plantarum {ATCC} 8014 {Designed} for {Gluten}-{Free} {Muffins}—{A} {Powerful} {Tool} to {Enhance} {Bioactive} {Compounds}. Applied Sciences, 10(20). https://doi.org/10.3390/app10207140chis_quinoa_2020
  273. #Michael, D. et al. (2020). A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. Scientific Reports, 10(1), 4183. https://doi.org/10.1038/s41598-020-60991-7michael_randomised_2020
  274. #Hiergeist, A. et al. (2020). Current {Limitations} for the {Assessment} of the {Role} of the {Gut} {Microbiome} for {Attention} {Deficit} {Hyperactivity} {Disorder} ({ADHD}). Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00623hiergeist_current_2020
  275. #Kumperscak, H. et al. (2020). A {Pilot} {Randomized} {Control} {Trial} {With} the {Probiotic} {Strain} {Lactobacillus} rhamnosus {GG} ({LGG}) in {ADHD}: {Children} and {Adolescents} {Report} {Better} {Health}-{Related} {Quality} of {Life}. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00181kumperscak_pilot_2020
  276. #Cataldo, P. et al. (2020). Enhancement of γ-aminobutyric acid ({GABA}) production by {Lactobacillus} brevis {CRL} 2013 based on carbohydrate fermentation. International Journal of Food Microbiology, 333, 108792. https://doi.org/10.1016/j.ijfoodmicro.2020.108792cataldo_enhancement_2020
  277. #Hepsomali, P. et al. (2020). Effects of {Oral} {Gamma}-{Aminobutyric} {Acid} ({GABA}) {Administration} on {Stress} and {Sleep} in {Humans}: {A} {Systematic} {Review}. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00923hepsomali_effects_2020
  278. #Aquili, L. (2020). The {Role} of {Tryptophan} and {Tyrosine} in {Executive} {Function} and {Reward} {Processing}. International Journal of Tryptophan Research, 13. https://doi.org/10.1177/1178646920964825aquili_role_2020
  279. #Lundberg, M. et al. (2020). Lithium and the {Interplay} {Between} {Telomeres} and {Mitochondria} in {Bipolar} {Disorder}. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.586083lundberg_lithium_2020
  280. #Lange, K. (2020). Micronutrients and {Diets} in the {Treatment} of {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Chances} and {Pitfalls}. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00102lange_micronutrients_2020
  281. #Shareghfarid, E. et al. (2020). Empirically derived dietary patterns and food groups intake in relation with {Attention} {Deficit}/{Hyperactivity} {Disorder} ({ADHD}): {A} systematic review and meta-analysis. Clinical Nutrition ESPEN, 36, 28--35. https://doi.org/10.1016/j.clnesp.2019.10.013shareghfarid_empirically_2020
  282. #Pouille, C. et al. (2020). Chicory root flour – {A} functional food with potential multiple health benefits evaluated in a mice model. Journal of Functional Foods, 74, 104174. https://doi.org/10.1016/j.jff.2020.104174pouille_chicory_2020
  283. #Chiş, M. et al. (2020). Quinoa {Sourdough} {Fermented} with {Lactobacillus} plantarum {ATCC} 8014 {Designed} for {Gluten}-{Free} {Muffins}—{A} {Powerful} {Tool} to {Enhance} {Bioactive} {Compounds}. Applied Sciences, 10(20), 7140. https://doi.org/10.3390/app10207140chis_quinoa_2020-1
  284. #Cataldo, P. et al. (2020). Immunomodulatory {Properties} of a γ-{Aminobutyric} {Acid}-{Enriched} {Strawberry} {Juice} {Produced} by {Levilactobacillus} brevis {CRL} 2013. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.610016cataldo_immunomodulatory_2020
  285. #Donfrancesco, R. et al. (2020). Anti-{Yo} {Antibodies} in {Children} {With} {ADHD}: {First} {Results} {About} {Serum} {Cytokines}. Journal of Attention Disorders, 24(11), 1497--1502. https://doi.org/10.1177/1087054716643387donfrancesco_anti-yo_2020
  286. #Mock, E. et al. (2020). Discovery of a {NAPE}-{PLD} inhibitor that modulates emotional behavior in mice. Nature Chemical Biology, 16(6), 667--675. https://doi.org/10.1038/s41589-020-0528-7mock_discovery_2020
  287. #Naghshi, S. et al. (2020). Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ, m2412. https://doi.org/10.1136/bmj.m2412naghshi_dietary_2020
  288. #Yu, J. et al. (2020). Evidence-based prevention of {Alzheimer}\&\#039;s disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. Journal of Neurology, Neurosurgery \& Psychiatry, 91(11), 1201. https://doi.org/10.1136/jnnp-2019-321913yu_evidence-based_2020
  289. #Melse-Boonstra, A. (2020). Bioavailability of {Micronutrients} {From} {Nutrient}-{Dense} {Whole} {Foods}: {Zooming} in on {Dairy}, {Vegetables}, and {Fruits}. Frontiers in Nutrition, 7. https://doi.org/10.3389/fnut.2020.00101melse-boonstra_bioavailability_2020
  290. #Chaiyarit, S. & Thongboonkerd, V. (2020). Mitochondrial {Dysfunction} and {Kidney} {Stone} {Disease}. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.566506chaiyarit_mitochondrial_2020
  291. #Hemamy, M. et al. (2020). Effect of {Vitamin} {D} and magnesium supplementation on behavior problems in children with attention-deficit hyperactivity disorder. International Journal of Preventive Medicine, 11(1), 4. https://doi.org/10.4103/ijpvm.IJPVM_546_17hemamy_effect_2020
  292. #Tardy, A. et al. (2020). Vitamins and {Minerals} for {Energy}, {Fatigue} and {Cognition}: {A} {Narrative} {Review} of the {Biochemical} and {Clinical} {Evidence}. Nutrients, 12(1), 228. https://doi.org/10.3390/nu12010228tardy_vitamins_2020
  293. #Puts, N. et al. (2020). Reduced striatal {GABA} in unmedicated children with {ADHD} at {7T}. Psychiatry Research: Neuroimaging, 301, 111082. https://doi.org/10.1016/j.pscychresns.2020.111082puts_reduced_2020
  294. #Chang, J. et al. (2020). Cortisol, inflammatory biomarkers and neurotrophins in children and adolescents with attention deficit hyperactivity disorder ({ADHD}) in {Taiwan}. Brain, Behavior, and Immunity, 88, 105--113. https://doi.org/10.1016/j.bbi.2020.05.017chang_cortisol_2020
  295. #Holland, C. et al. (2020). Plant {Cell} {Walls}: {Impact} on {Nutrient} {Bioaccessibility} and {Digestibility}. Foods, 9(2), 201. https://doi.org/10.3390/foods9020201holland_plant_2020
  296. #Holland, C. et al. (2020). Plant {Cell} {Walls}: {Impact} on {Nutrient} {Bioaccessibility} and {Digestibility}. Foods, 9(2), 201. https://doi.org/10.3390/foods9020201holland_plant_2020-1
  297. #Saleh-Ghadimi, S. et al. (2020). Endocannabinoid system and cardiometabolic risk factors: {A} comprehensive systematic review insight into the mechanistic effects of omega-3 fatty acids. Life Sciences, 250, 117556. https://doi.org/10.1016/j.lfs.2020.117556saleh-ghadimi_endocannabinoid_2020
  298. #Pirinen, E. et al. (2020). Niacin {Cures} {Systemic} {NAD}+ {Deficiency} and {Improves} {Muscle} {Performance} in {Adult}-{Onset} {Mitochondrial} {Myopathy}. Cell Metabolism, 31(6), 1078--1090.e5. https://doi.org/10.1016/j.cmet.2020.04.008pirinen_niacin_2020
  299. #Silva, Y. et al. (2020). The {Role} of {Short}-{Chain} {Fatty} {Acids} {From} {Gut} {Microbiota} in {Gut}-{Brain} {Communication}. Frontiers in Endocrinology, 11, 25. https://doi.org/10.3389/fendo.2020.00025silva_role_2020
  300. #Puts, N. et al. (2020). Reduced striatal {GABA} in unmedicated children with {ADHD} at {7T}. Psychiatry Research: Neuroimaging, 301, 111082. https://doi.org/10.1016/j.pscychresns.2020.111082puts_reduced_2020-1
  301. #Eliášová, M. et al. (2020). Influence of baking on anthocyanin content in coloured-grain wheat bread. Plant, Soil and Environment, 66(8), 381--386. https://doi.org/10.17221/210/2020-PSEeliasova_influence_2020
  302. #Arellanes, I. et al. (2020). Brain delivery of supplemental docosahexaenoic acid ({DHA}): {A} randomized placebo-controlled clinical trial. eBioMedicine, 59, 102883. https://doi.org/10.1016/j.ebiom.2020.102883arellanes_brain_2020
  303. #Sugasini, D. et al. (2020). Plasma {BDNF} is a more reliable biomarker than erythrocyte omega-3 index for the omega-3 fatty acid enrichment of brain. Scientific Reports, 10(1), 10809. https://doi.org/10.1038/s41598-020-67868-9sugasini_plasma_2020
  304. #Guo, D. et al. (2020). Association of maternal diabetes with attention deficit/hyperactivity disorder ({ADHD}) in offspring: {A} meta-analysis and review. Diabetes Research and Clinical Practice, 165, 108269. https://doi.org/10.1016/j.diabres.2020.108269guo_association_2020
  305. #Christensen, J. et al. (2020). Diverse {Autonomic} {Nervous} {System} {Stress} {Response} {Patterns} in {Childhood} {Sensory} {Modulation}. Frontiers in Integrative Neuroscience, 14, 6. https://doi.org/10.3389/fnint.2020.00006christensen_diverse_2020
  306. #Huang, S. et al. (2020). Recent advances in modulators of circadian rhythms: an update and perspective. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1267--1286. https://doi.org/10.1080/14756366.2020.1772249huang_recent_2020
  307. #Bundgaard-Nielsen, C. et al. (2020). Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: {A} systematic literature review.. Gut Microbes, 11(5), 1172--1187. https://doi.org/10.1080/19490976.2020.1748258bundgaard-nielsen_gut_2020-1
  308. #Hiergeist, A. et al. (2020). Current {Limitations} for the {Assessment} of the {Role} of the {Gut} {Microbiome} for {Attention} {Deficit} {Hyperactivity} {Disorder} ({ADHD}). Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.00623hiergeist_current_2020-1
  309. #Cataldo, P. et al. (2020). Enhancement of γ-aminobutyric acid ({GABA}) production by {Lactobacillus} brevis {CRL} 2013 based on carbohydrate fermentation. International Journal of Food Microbiology, 333, 108792. https://doi.org/10.1016/j.ijfoodmicro.2020.108792cataldo_enhancement_2020-1
  310. #Mooney, M. et al. (2020). Large epigenome-wide association study of childhood {ADHD} identifies peripheral {DNA} methylation associated with disease and polygenic risk burden. Translational Psychiatry, 10(1), 8. https://doi.org/10.1038/s41398-020-0710-4mooney_large_2020
  311. #Belenguer-Varea, Á. et al. (2020). Oxidative stress and exceptional human longevity: {Systematic} review. Free Radical Biology and Medicine, 149, 51--63. https://doi.org/10.1016/j.freeradbiomed.2019.09.019belenguer-varea_oxidative_2020
  312. #Belenguer-Varea, Á. et al. (2020). Oxidative stress and exceptional human longevity: {Systematic} review. Free Radical Biology and Medicine, 149, 51--63. https://doi.org/10.1016/j.freeradbiomed.2019.09.019belenguer-varea_oxidative_2020-1
  313. #Mileykovskaya, E. et al. (2020). Nobiletin: {Targeting} the {Circadian} {Network} to {Promote} {Bioenergetics} and {Healthy} {Aging}. Biochemistry (Moscow), 85(12-13), 1554--1559. https://doi.org/10.1134/S000629792012007Xmileykovskaya_nobiletin_2020
  314. #Deng, F. et al. (2019). Metabonomics reveals peripheral and central short-chain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques. Neuropsychiatric Disease and Treatment, Volume 15, 1077--1088. https://doi.org/10.2147/NDT.S186071deng_metabonomics_2019
  315. #Fan, C. et al. (2019). {SCFA} producing bacteria shape the subtype of {ADHD} in children.fan_scfa_2019
  316. #Cortese, S. & Rohde, L. (2019). {ADHD} diagnoses: are 116 200 permutations enough?. The Lancet Child \& Adolescent Health, 3(12), 844--845. https://doi.org/10.1016/S2352-4642(19)30328-1cortese_adhd_2019
  317. #Deng, F. et al. (2019). {\textless}p{\textgreater}{Metabonomics} reveals peripheral and central short-chain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques{\textless}/p{\textgreater}. Neuropsychiatric Disease and Treatment, Volume 15, 1077--1088. https://doi.org/10.2147/NDT.S186071deng_pmetabonomics_2019
  318. #Fan, C. et al. (2019). {SCFA} producing bacteria shape the subtype of {ADHD} in children.fan_scfa_2019-1
  319. #Watson, J. et al. (2019). Emerging class of omega-3 fatty acid endocannabinoids \& their derivatives. Prostaglandins \& Other Lipid Mediators, 143, 106337. https://doi.org/10.1016/j.prostaglandins.2019.106337watson_emerging_2019
  320. #Bull-Larsen, S. & Mohajeri, M. (2019). The {Potential} {Influence} of the {Bacterial} {Microbiome} on the {Development} and {Progression} of {ADHD}. Nutrients, 11(11), 2805. https://doi.org/10.3390/nu11112805bull-larsen_potential_2019
  321. #Mocchegiani, E. & Malavolta, M. (2019). Role of {Zinc} and {Selenium} in {Oxidative} {Stress} and {Immunosenescence}: {Implications} for {Healthy} {Aging} and {Longevity}.mocchegiani_role_2019
  322. #Wang, L. et al. (2019). Dietary {Profiles}, {Nutritional} {Biochemistry} {Status}, and {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Path} {Analysis} for a {Case}-{Control} {Study}. Journal of Clinical Medicine, 8(5), 709. https://doi.org/10.3390/jcm8050709wang_dietary_2019
  323. #Verlaet, A. et al. (2019). Oxidative stress and immune aberrancies in attention-deficit/hyperactivity disorder ({ADHD}): a case–control comparison. European Child \& Adolescent Psychiatry, 28(5), 719--729. https://doi.org/10.1007/s00787-018-1239-4verlaet_oxidative_2019
  324. #Wesselink, E. et al. (2019). Feeding mitochondria: {Potential} role of nutritional components to improve critical illness convalescence. Clinical Nutrition, 38(3), 982--995. https://doi.org/10.1016/j.clnu.2018.08.032wesselink_feeding_2019
  325. #Patrick, R. (2019). Role of phosphatidylcholine‐{DHA} in preventing {APOE4}‐associated {Alzheimer}'s disease. The FASEB Journal, 33(2), 1554--1564. https://doi.org/10.1096/fj.201801412Rpatrick_role_2019
  326. #Mariotti, F. & Gardner, C. (2019). Dietary {Protein} and {Amino} {Acids} in {Vegetarian} {Diets}—{A} {Review}. Nutrients, 11(11), 2661. https://doi.org/10.3390/nu11112661mariotti_dietary_2019
  327. #Sun, Y. et al. (2019). Association of {Major} {Dietary} {Protein} {Sources} with {All}-cause and {Cause}-specific {Mortality}: {The} {Women}’s {Health} {Initiative} ({FS03}-08-19). Current Developments in Nutrition, 3, nzz046.FS03--08--19. https://doi.org/https://doi.org/10.1093/cdn/nzz046.FS03-08-19sun_association_2019
  328. #Hensel, C. et al. (2019). Influence of nutritional tyrosine on cognition and functional connectivity in healthy old humans. NeuroImage, 193, 139--145. https://doi.org/10.1016/j.neuroimage.2019.03.005hensel_influence_2019
  329. #Thanarajah, S. et al. (2019). Food {Intake} {Recruits} {Orosensory} and {Post}-ingestive {Dopaminergic} {Circuits} to {Affect} {Eating} {Desire} in {Humans}. Cell Metabolism, 29(3), 695--706.e4. https://doi.org/10.1016/j.cmet.2018.12.006thanarajah_food_2019
  330. #Takahashi, M. & Takahashi, K. (2019). Water-soluble {CoQ10} as {A} {Promising} {Anti}-aging {Agent} for {Neurological} {Dysfunction} in {Brain} {Mitochondria}. Antioxidants, 8(3), 61. https://doi.org/10.3390/antiox8030061takahashi_water-soluble_2019
  331. #van den Brink, A. et al. (2019). The {Mediterranean}, {Dietary} {Approaches} to {Stop} {Hypertension} ({DASH}), and {Mediterranean}-{DASH} {Intervention} for {Neurodegenerative} {Delay} ({MIND}) {Diets} {Are} {Associated} with {Less} {Cognitive} {Decline} and a {Lower} {Risk} of {Alzheimer}’s {Disease}—{A} {Review}. Advances in Nutrition, 10(6), 1040--1065. https://doi.org/10.1093/advances/nmz054van_den_brink_mediterranean_2019
  332. #Nooshkam, M. et al. (2019). The {Maillard} reaction products as food-born antioxidant and antibrowning agents in model and real food systems. Food Chemistry, 275, 644--660. https://doi.org/10.1016/j.foodchem.2018.09.083nooshkam_maillard_2019
  333. #DaSilva, N. et al. (2019). Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation \textit{in vitro}. Nutritional Neuroscience, 22(3), 185--195. https://doi.org/10.1080/1028415X.2017.1360558dasilva_pomegranate_2019
  334. #Toney, A. et al. (2019). Urolithin {A}, a {Gut} {Metabolite}, {Improves} {Insulin} {Sensitivity} {Through} {Augmentation} of {Mitochondrial} {Function} and {Biogenesis}. Obesity, 27(4), 612--620. https://doi.org/10.1002/oby.22404toney_urolithin_2019
  335. #Toney, A. et al. (2019). Urolithin {A}, a {Gut} {Metabolite}, {Improves} {Insulin} {Sensitivity} {Through} {Augmentation} of {Mitochondrial} {Function} and {Biogenesis}. Obesity, 27(4), 612--620. https://doi.org/10.1002/oby.22404toney_urolithin_2019-1
  336. #Kaplan, A. et al. (2019). Protein bioavailability of {Wolffia} globosa duckweed, a novel aquatic plant – {A} randomized controlled trial. Clinical Nutrition, 38(6), 2576--2582. https://doi.org/10.1016/j.clnu.2018.12.009kaplan_protein_2019
  337. #Baziar, S. et al. (2019). \textit{{Crocus} sativus} {L}. {Versus} {Methylphenidate} in {Treatment} of {Children} with {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {A} {Randomized}, {Double}-{Blind} {Pilot} {Study}. Journal of Child and Adolescent Psychopharmacology, 29(3), 205--212. https://doi.org/10.1089/cap.2018.0146baziar_crocus_2019
  338. #Toney, A. et al. (2019). Urolithin {A}, a {Gut} {Metabolite}, {Improves} {Insulin} {Sensitivity} {Through} {Augmentation} of {Mitochondrial} {Function} and {Biogenesis}. Obesity, 27(4), 612--620. https://doi.org/10.1002/oby.22404toney_urolithin_2019-2
  339. #Santos, P. et al. (2019). ¿{Cómo} afecta el metilfenidato al circuito de activación por defecto? {Revisión} sistemática. Revista de Neurología, 68(10), 417. https://doi.org/10.33588/rn.6810.2018487santos_como_2019
  340. #Santos, P. et al. (2019). ¿{Cómo} afecta el metilfenidato al circuito de activación por defecto? {Revisión} sistemática. Revista de Neurología, 68(10), 417. https://doi.org/10.33588/rn.6810.2018487santos_como_2019-1
  341. #Tiani, K. et al. (2019). The {Role} of {Brain} {Barriers} in {Maintaining} {Brain} {Vitamin} {Levels}. Annual Review of Nutrition, 39(1), 147--173. https://doi.org/10.1146/annurev-nutr-082018-124235tiani_role_2019
  342. #Walker, R. et al. (2019). Predicting the effects of supplemental {EPA} and {DHA} on the omega-3 index. The American Journal of Clinical Nutrition, 110(4), 1034--1040. https://doi.org/10.1093/ajcn/nqz161walker_predicting_2019
  343. #Dhir, S. et al. (2019). Neurological, {Psychiatric}, and {Biochemical} {Aspects} of {Thiamine} {Deficiency} in {Children} and {Adults}. Frontiers in Psychiatry, 10, 207. https://doi.org/10.3389/fpsyt.2019.00207dhir_neurological_2019
  344. #Wilson, M. et al. (2019). Disorders affecting vitamin {B}$_{\textrm{6}}$ metabolism. Journal of Inherited Metabolic Disease, 42(4), 629--646. https://doi.org/10.1002/jimd.12060wilson_disorders_2019
  345. #Natarajan, T. et al. (2019). Nutraceutical potentials of synergic foods: a systematic review. Journal of Ethnic Foods, 6(1), 27. https://doi.org/10.1186/s42779-019-0033-3natarajan_nutraceutical_2019
  346. #Tiani, K. et al. (2019). The {Role} of {Brain} {Barriers} in {Maintaining} {Brain} {Vitamin} {Levels}. Annual Review of Nutrition, 39(1), 147--173. https://doi.org/10.1146/annurev-nutr-082018-124235tiani_role_2019-1
  347. #Wadsworth, M. et al. (2019). Co‐activation of {SAM} and {HPA} responses to acute stress: {A} review of the literature and test of differential associations with preadolescents’ internalizing and externalizing. Developmental Psychobiology, 61(7), 1079--1093. https://doi.org/10.1002/dev.21866wadsworth_coactivation_2019
  348. #Galland-Decker, C. et al. (2019). Prevalence and factors associated with fatigue in the {Lausanne} middle-aged population: a population-based, cross-sectional survey. BMJ Open, 9(8). https://doi.org/10.1136/bmjopen-2018-027070galland-decker_prevalence_2019
  349. #Deng, F. et al. (2019). Metabonomics reveals peripheral and central short-chain fatty acid and amino acid dysfunction in a naturally occurring depressive model of macaques. Neuropsychiatric Disease and Treatment, Volume 15, 1077--1088. https://doi.org/10.2147/NDT.S186071deng_metabonomics_2019-1
  350. #Watson, J. et al. (2019). Emerging class of omega-3 fatty acid endocannabinoids \& their derivatives. Prostaglandins \& Other Lipid Mediators, 143, 106337. https://doi.org/10.1016/j.prostaglandins.2019.106337watson_emerging_2019-1
  351. #Becker, S. et al. (2019). Shortened {Sleep} {Duration} {Causes} {Sleepiness}, {Inattention}, and {Oppositionality} in {Adolescents} {With} {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Findings} {From} a {Crossover} {Sleep} {Restriction}/{Extension} {Study}. Journal of the American Academy of Child \& Adolescent Psychiatry, 58(4), 433--442. https://doi.org/10.1016/j.jaac.2018.09.439becker_shortened_2019
  352. #Becker, S. et al. (2019). Shortened {Sleep} {Duration} {Causes} {Sleepiness}, {Inattention}, and {Oppositionality} in {Adolescents} {With} {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Findings} {From} a {Crossover} {Sleep} {Restriction}/{Extension} {Study}. Journal of the American Academy of Child \& Adolescent Psychiatry, 58(4), 433--442. https://doi.org/10.1016/j.jaac.2018.09.439becker_shortened_2019-1
  353. #Youngstedt, S. et al. (2019). Human circadian phase–response curves for exercise. The Journal of Physiology, 597(8), 2253--2268. https://doi.org/10.1113/JP276943youngstedt_human_2019
  354. #Toney, A. et al. (2019). Urolithin {A}, a {Gut} {Metabolite}, {Improves} {Insulin} {Sensitivity} {Through} {Augmentation} of {Mitochondrial} {Function} and {Biogenesis}. Obesity, 27(4), 612--620. https://doi.org/10.1002/oby.22404toney_urolithin_2019-3
  355. #Tähkämö, L. et al. (2019). Systematic review of light exposure impact on human circadian rhythm. Chronobiology International, 36(2), 151--170. https://doi.org/10.1080/07420528.2018.1527773tahkamo_systematic_2019
  356. #Andreux, P. et al. (2019). The mitophagy activator urolithin {A} is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism, 1(6), 595--603. https://doi.org/10.1038/s42255-019-0073-4andreux_mitophagy_2019
  357. #Schön, M. et al. (2019). The {Potential} of {Carnosine} in {Brain}-{Related} {Disorders}: {A} {Comprehensive} {Review} of {Current} {Evidence}. Nutrients, 11(6), 1196. https://doi.org/10.3390/nu11061196schon_potential_2019
  358. #Kurosaki, H. et al. (2019). Administration of tetrahydrobiopterin restored the decline of dopamine in the striatum induced by an acute action of {MPTP}. Neurochemistry International, 125, 16--24. https://doi.org/10.1016/j.neuint.2019.02.005kurosaki_administration_2019
  359. #Hein, S. et al. (2019). Systematic {Review} of the {Effects} of {Blueberry} on {Cognitive} {Performance} as {We} {Age}. The Journals of Gerontology: Series A, 74(7), 984--995. https://doi.org/10.1093/gerona/glz082hein_systematic_2019
  360. #Hein, S. et al. (2019). Systematic {Review} of the {Effects} of {Blueberry} on {Cognitive} {Performance} as {We} {Age}. The Journals of Gerontology: Series A, 74(7), 984--995. https://doi.org/10.1093/gerona/glz082hein_systematic_2019-1
  361. #Prehn-Kristensen, A. et al. (2018). Reduced microbiome alpha diversity in young patients with {ADHD}. PLOS ONE, 13(7), e0200728. https://doi.org/10.1371/journal.pone.0200728prehn-kristensen_reduced_2018
  362. #Rose, S. et al. (2018). Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Translational Psychiatry, 8(1), 42. https://doi.org/10.1038/s41398-017-0089-zrose_butyrate_2018
  363. #Hoyles, L. et al. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6(1), 55. https://doi.org/10.1186/s40168-018-0439-yhoyles_microbiome-host_2018
  364. #Hoyles, L. et al. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6(1), 55. https://doi.org/10.1186/s40168-018-0439-yhoyles_microbiome-host_2018-1
  365. #Rose, S. et al. (2018). Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Translational Psychiatry, 8(1), 42. https://doi.org/10.1038/s41398-017-0089-zrose_butyrate_2018-1
  366. #Prehn-Kristensen, A. et al. (2018). Reduced microbiome alpha diversity in young patients with {ADHD}. PLOS ONE, 13(7), e0200728. https://doi.org/10.1371/journal.pone.0200728prehn-kristensen_reduced_2018-1
  367. #Briguglio, M. et al. (2018). Dietary {Neurotransmitters}: {A} {Narrative} {Review} on {Current} {Knowledge}. Nutrients, 10(5), 591. https://doi.org/10.3390/nu10050591briguglio_dietary_2018
  368. #Jiang, H. et al. (2018). Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behavioural Brain Research, 347, 408--413. https://doi.org/10.1016/j.bbr.2018.03.036jiang_gut_2018
  369. #Ighodaro, O. & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase ({SOD}), catalase ({CAT}) and glutathione peroxidase ({GPX}): {Their} fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287--293. https://doi.org/10.1016/j.ajme.2017.09.001ighodaro_first_2018
  370. #Alonso Canal, L. et al. (2018). Gluten-{Free} {Diet} for the {Treatment} of {ADHD}; {Pilot} {Study}. OBM Neurobiology, 3(2), 1--1. https://doi.org/10.21926/obm.neurobiol.1902024alonso_canal_gluten-free_2018
  371. #Verlaet, A. et al. (2018). Rationale for {Dietary} {Antioxidant} {Treatment} of {ADHD}. Nutrients, 10(4), 405. https://doi.org/10.3390/nu10040405verlaet_rationale_2018
  372. #Solleiro-Villavicencio, H. & Rivas-Arancibia, S. (2018). Effect of {Chronic} {Oxidative} {Stress} on {Neuroinflammatory} {Response} {Mediated} by {CD4}+{T} {Cells} in {Neurodegenerative} {Diseases}. Frontiers in Cellular Neuroscience, 12. https://doi.org/10.3389/fncel.2018.00114solleiro-villavicencio_effect_2018
  373. #Avgerinos, K. et al. (2018). Effects of creatine supplementation on cognitive function of healthy individuals: {A} systematic review of randomized controlled trials. Experimental Gerontology, 108, 166--173. https://doi.org/10.1016/j.exger.2018.04.013avgerinos_effects_2018
  374. #Rucklidge, J. et al. (2018). Vitamin‐mineral treatment improves aggression and emotional regulation in children with {\textless}scp{\textgreater}{ADHD}{\textless}/scp{\textgreater} : a fully blinded, randomized, placebo‐controlled trial. Journal of Child Psychology and Psychiatry, 59(3), 232--246. https://doi.org/10.1111/jcpp.12817rucklidge_vitaminmineral_2018
  375. #Morton, R. et al. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52(6), 376--384. https://doi.org/10.1136/bjsports-2017-097608morton_systematic_2018
  376. #Son, H. et al. (2018). Glutamine has antidepressive effects through increments of glutamate and glutamine levels and glutamatergic activity in the medial prefrontal cortex. Neuropharmacology, 143, 143--152. https://doi.org/10.1016/j.neuropharm.2018.09.040son_glutamine_2018
  377. #Davies}, {. (2018). Oatmeal {Effect} on {N}-acyl-phosphatidylethanolamines. .sean_davies_oatmeal_2018
  378. #Sutton, E. et al. (2018). Early {Time}-{Restricted} {Feeding} {Improves} {Insulin} {Sensitivity}, {Blood} {Pressure}, and {Oxidative} {Stress} {Even} without {Weight} {Loss} in {Men} with {Prediabetes}. Cell Metabolism, 27(6), 1212--1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010sutton_early_2018
  379. #Losso, J. et al. (2018). Pilot {Study} of the {Tart} {Cherry} {Juice} for the {Treatment} of {Insomnia} and {Investigation} of {Mechanisms}. American Journal of Therapeutics, 25(2), e194--e201. https://doi.org/10.1097/MJT.0000000000000584losso_pilot_2018
  380. #Rose, S. et al. (2018). Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Translational Psychiatry, 8(1), 42. https://doi.org/10.1038/s41398-017-0089-zrose_butyrate_2018-2
  381. #Hoyles, L. et al. (2018). Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome, 6(1), 55. https://doi.org/10.1186/s40168-018-0439-yhoyles_microbiome-host_2018-2
  382. #Jiang, H. et al. (2018). Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behavioural Brain Research, 347, 408--413. https://doi.org/10.1016/j.bbr.2018.03.036jiang_gut_2018-1
  383. #O'Callaghan, F. et al. (2018). Effects of caffeine on sleep quality and daytime functioning. Risk Management and Healthcare Policy, Volume 11, 263--271. https://doi.org/10.2147/RMHP.S156404ocallaghan_effects_2018
  384. #Poggiogalle, E. et al. (2018). Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84, 11--27. https://doi.org/10.1016/j.metabol.2017.11.017poggiogalle_circadian_2018
  385. #Sampasa-Kanyinga, H. et al. (2018). Sleep duration and consumption of sugar-sweetened beverages and energy drinks among adolescents. Nutrition, 48, 77--81. https://doi.org/10.1016/j.nut.2017.11.013sampasa-kanyinga_sleep_2018
  386. #Balazs, J. & Kereszteny, A. (2017). Attention-deficit/hyperactivity disorder and suicide: {A} systematic review. World Journal of Psychiatry, 7(1), 44--59. https://doi.org/10.5498/wjp.v7.i1.44balazs_attention-deficithyperactivity_2017
  387. #Aarts, E. et al. (2017). Gut microbiome in {ADHD} and its relation to neural reward anticipation. PLOS ONE, 12(9), e0183509. https://doi.org/10.1371/journal.pone.0183509aarts_gut_2017
  388. #Mahone, E. & Denckla, M. (2017). Attention-deficit/hyperactivity disorder: a historical neuropsychological perspective. Journal of the International Neuropsychological Society, 23(9-10), 916--929.mahone_attention-deficithyperactivity_2017
  389. #Balazs, J. & Kereszteny, A. (2017). Attention-deficit/hyperactivity disorder and suicide: {A} systematic review. World journal of psychiatry, 7(1), 44.balazs_attention-deficithyperactivity_2017-1
  390. #Liu, A. et al. (2017). A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. https://doi.org/10.1186/s12937-017-0271-4liu_healthy_2017
  391. #Mahone, E. & Denckla, M. (2017). Attention-deficit/hyperactivity disorder: a historical neuropsychological perspective. Journal of the International Neuropsychological Society, 23(9-10), 916--929.mahone_attention-deficithyperactivity_2017-1
  392. #Balazs, J. & Kereszteny, A. (2017). Attention-deficit/hyperactivity disorder and suicide: {A} systematic review. World journal of psychiatry, 7(1), 44.balazs_attention-deficithyperactivity_2017-2
  393. #Mahone, E. & Denckla, M. (2017). Attention-deficit/hyperactivity disorder: a historical neuropsychological perspective. Journal of the International Neuropsychological Society, 23(9-10), 916--929.mahone_attention-deficithyperactivity_2017-2
  394. #Balazs, J. & Kereszteny, A. (2017). Attention-deficit/hyperactivity disorder and suicide: {A} systematic review. World journal of psychiatry, 7(1), 44.balazs_attention-deficithyperactivity_2017-3
  395. #Khailova, L. et al. (2017). Lactobacillus rhamnosus {GG} treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of {Pseudomonas} aeruginosa pneumonia. Clinical Nutrition, 36(6), 1549--1557. https://doi.org/10.1016/j.clnu.2016.09.025khailova_lactobacillus_2017
  396. #Naaijen, J. et al. (2017). Glutamatergic and {GABAergic} gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in {ADHD} and autism. Translational Psychiatry, 7(1), e999--e999. https://doi.org/10.1038/tp.2016.273naaijen_glutamatergic_2017
  397. #Nimgampalle, M. (2017). Anti-{Alzheimer} {Properties} of {Probiotic}, {Lactobacillus} plantarum {MTCC} 1325 in {Alzheimer}’s {Disease} induced {Albino} {Rats}. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/JCDR/2017/26106.10428nimgampalle_anti-alzheimer_2017
  398. #Cocchi, M. et al. (2017). Linoleic acid: {Is} this the key that unlocks the quantum brain? {Insights} linking broken symmetries in molecular biology, mood disorders and personalistic emergentism. BMC Neuroscience, 18(1), 38. https://doi.org/10.1186/s12868-017-0356-1cocchi_linoleic_2017
  399. #Schwingshackl, L. et al. (2017). Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutrition \& Diabetes, 7(4), e262--e262. https://doi.org/10.1038/nutd.2017.12schwingshackl_olive_2017
  400. #Liu, A. et al. (2017). A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. https://doi.org/10.1186/s12937-017-0271-4liu_healthy_2017-1
  401. #Aarts, E. et al. (2017). Gut microbiome in {ADHD} and its relation to neural reward anticipation. PLOS ONE, 12(9), e0183509. https://doi.org/10.1371/journal.pone.0183509aarts_gut_2017-1
  402. #Tsai, S. (2017). Role of neurotrophic factors in attention deficit hyperactivity disorder. Cytokine \& Growth Factor Reviews, 34, 35--41. https://doi.org/10.1016/j.cytogfr.2016.11.003tsai_role_2017
  403. #Afaneh, I. et al. (2017). Effect of {Frying} {Temperature} and duration on the {Formation} of {Trans} {Fatty} {Acids} in {Selected} {Fats} and {Oils}. American Journal of Food Science and Technology, 5(6), 245--248. https://doi.org/10.12691/ajfst-5-6-4afaneh_effect_2017
  404. #Covey, D. et al. (2017). Endocannabinoid modulation of dopamine neurotransmission. Neuropharmacology, 124, 52--61. https://doi.org/10.1016/j.neuropharm.2017.04.033covey_endocannabinoid_2017
  405. #Du, K. et al. (2017). Association of {Serum} {Manganese} {Levels} with  {Alzheimer}’s {Disease} and {Mild} {Cognitive} {Impairment}:  {A} {Systematic} {Review} and {Meta}‐{Analysis}. Nutrients, 9(3), 231. https://doi.org/10.3390/nu9030231du_association_2017
  406. #Hatch, M. (2017). Gut microbiota and oxalate homeostasis. Annals of Translational Medicine, 5, 36--36. https://doi.org/10.21037/atm.2016.12.70hatch_gut_2017
  407. #Hatch, M. (2017). Gut microbiota and oxalate homeostasis. Annals of Translational Medicine, 5, 36--36. https://doi.org/10.21037/atm.2016.12.70hatch_gut_2017-1
  408. #Marsland, A. et al. (2017). Systemic inflammation and resting state connectivity of the default mode network. Brain, Behavior, and Immunity, 62, 162--170. https://doi.org/10.1016/j.bbi.2017.01.013marsland_systemic_2017
  409. #Ríos-Hernández, A. et al. (2017). The {Mediterranean} {Diet} and {ADHD} in {Children} and {Adolescents}. Pediatrics, 139(2), e20162027. https://doi.org/10.1542/peds.2016-2027rios-hernandez_mediterranean_2017
  410. #Rogers, D. et al. (2017). Fatigue in an adult attention deficit hyperactivity disorder population: {A} trans‐diagnostic approach. British Journal of Clinical Psychology, 56(1), 33--52. https://doi.org/10.1111/bjc.12119rogers_fatigue_2017
  411. #Balazs, J. & Kereszteny, A. (2017). Attention-deficit/hyperactivity disorder and suicide: {A} systematic review. World Journal of Psychiatry, 7(1), 44--59. https://doi.org/10.5498/wjp.v7.i1.44balazs_attention-deficithyperactivity_2017-4
  412. #Aarts, E. et al. (2017). Gut microbiome in {ADHD} and its relation to neural reward anticipation. PLOS ONE, 12(9), e0183509. https://doi.org/10.1371/journal.pone.0183509aarts_gut_2017-2
  413. #Mahone, E. & Denckla, M. (2017). Attention-deficit/hyperactivity disorder: a historical neuropsychological perspective. Journal of the International Neuropsychological Society, 23(9-10), 916--929.mahone_attention-deficithyperactivity_2017-3
  414. #Balazs, J. & Kereszteny, A. (2017). Attention-deficit/hyperactivity disorder and suicide: {A} systematic review. World journal of psychiatry, 7(1), 44.balazs_attention-deficithyperactivity_2017-5
  415. #Liu, A. et al. (2017). A healthy approach to dietary fats: understanding the science and taking action to reduce consumer confusion. Nutrition Journal, 16(1), 53. https://doi.org/10.1186/s12937-017-0271-4liu_healthy_2017-2
  416. #Khailova, L. et al. (2017). Lactobacillus rhamnosus {GG} treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of {Pseudomonas} aeruginosa pneumonia. Clinical Nutrition, 36(6), 1549--1557. https://doi.org/10.1016/j.clnu.2016.09.025khailova_lactobacillus_2017-1
  417. #Brevik, E. et al. (2017). Prevalence and clinical correlates of insomnia in adults with attention‐deficit hyperactivity disorder. Acta Psychiatrica Scandinavica, 136(2), 220--227. https://doi.org/10.1111/acps.12756brevik_prevalence_2017
  418. #Perry, R. et al. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213--217. https://doi.org/10.1038/nature18309perry_acetate_2016
  419. #Perry, R. et al. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213--217. https://doi.org/10.1038/nature18309perry_acetate_2016-1
  420. #Lazary, J. et al. (2016). Genetically reduced {FAAH} activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. European Neuropsychopharmacology, 26(6), 1020--1028. https://doi.org/10.1016/j.euroneuro.2016.03.003lazary_genetically_2016
  421. #Juárez Olguín, H. et al. (2016). The {Role} of {Dopamine} and {Its} {Dysfunction} as a {Consequence} of {Oxidative} {Stress}. Oxidative Medicine and Cellular Longevity, 2016(1). https://doi.org/10.1155/2016/9730467juarez_olguin_role_2016
  422. #Verma, P. et al. (2016). Attention deficit-hyperactivity disorder suffers from mitochondrial dysfunction. BBA Clinical, 6, 153--158. https://doi.org/10.1016/j.bbacli.2016.10.003verma_attention_2016
  423. #Li, Y. et al. (2016). Quercetin, {Inflammation} and {Immunity}. Nutrients, 8(3), 167. https://doi.org/10.3390/nu8030167li_quercetin_2016
  424. #Oulhaj, A. et al. (2016). Omega-3 {Fatty} {Acid} {Status} {Enhances} the {Prevention} of {Cognitive} {Decline} by {B} {Vitamins} in {Mild} {Cognitive} {Impairment}. Journal of Alzheimer's Disease, 50(2), 547--557. https://doi.org/10.3233/JAD-150777oulhaj_omega-3_2016
  425. #Neshatdoust, S. et al. (2016). High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: {Two} randomised, controlled trials. Nutrition and Healthy Aging, 4(1), 81--93. https://doi.org/10.3233/NHA-1615neshatdoust_high-flavonoid_2016
  426. #Kudiganti, V. et al. (2016). Efficacy and tolerability of {Meratrim} for weight management: a randomized, double-blind, placebo-controlled study in healthy overweight human subjects. Lipids in Health and Disease, 15(1), 136. https://doi.org/10.1186/s12944-016-0306-4kudiganti_efficacy_2016
  427. #Nakamura, Y. et al. (2016). Systematic review and meta-analysis reveals acutely elevated plasma cortisol following fasting but not less severe calorie restriction. Stress, 19(2), 151--157. https://doi.org/10.3109/10253890.2015.1121984nakamura_systematic_2016
  428. #Houghton, C. et al. (2016). Sulforaphane and {Other} {Nutrigenomic} {Nrf2} {Activators}: {Can} the {Clinician}’s {Expectation} {Be} {Matched} by the {Reality}?. Oxidative Medicine and Cellular Longevity, 2016(1). https://doi.org/10.1155/2016/7857186houghton_sulforaphane_2016
  429. #Kennedy, D. (2016). B {Vitamins} and the {Brain}: {Mechanisms}, {Dose} and {Efficacy}—{A} {Review}. Nutrients, 8(2), 68. https://doi.org/10.3390/nu8020068kennedy_b_2016
  430. #Zheltova, A. et al. (2016). Magnesium deficiency and oxidative stress: an update. BioMedicine, 6(4), 20. https://doi.org/10.7603/s40681-016-0020-6zheltova_magnesium_2016
  431. #Corona, J. & Duchen, M. (2016). {PPARγ} as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radical Biology and Medicine, 100, 153--163. https://doi.org/10.1016/j.freeradbiomed.2016.06.023corona_ppar_2016
  432. #Buettner, D. & Skemp, S. (2016). Blue {Zones}. American Journal of Lifestyle Medicine, 10(5), 318--321. https://doi.org/10.1177/1559827616637066buettner_blue_2016
  433. #✉, E. (2016). Relationship between {Impulsivity} and {Serum} {Oxytocin} in {Male} {Children} and {Adolescents} with {Attention}-{Deficit} and {Hyperactivity} {Disorder}: {A} {Preliminary} {Study}. . https://doi.org/doi:10.5152/npa.2015.10284esra_demirci_1_relationship_2016
  434. #Peralta, F. & Huidobro-Toro, J. (2016). Zinc as {Allosteric} {Ion} {Channel} {Modulator}: {Ionotropic} {Receptors} as {Metalloproteins}. International Journal of Molecular Sciences, 17(7), 1059. https://doi.org/10.3390/ijms17071059peralta_zinc_2016
  435. #Sleiman, S. et al. (2016). Exercise promotes the expression of brain derived neurotrophic factor ({BDNF}) through the action of the ketone body β-hydroxybutyrate. eLife, 5, e15092. https://doi.org/10.7554/eLife.15092sleiman_exercise_2016
  436. #Perry, R. et al. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534(7606), 213--217. https://doi.org/10.1038/nature18309perry_acetate_2016-2
  437. #Lazary, J. et al. (2016). Genetically reduced {FAAH} activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. European Neuropsychopharmacology, 26(6), 1020--1028. https://doi.org/10.1016/j.euroneuro.2016.03.003lazary_genetically_2016-1
  438. #Stanhope, K. (2016). Sugar consumption, metabolic disease and obesity: {The} state of the controversy. Critical Reviews in Clinical Laboratory Sciences, 53(1), 52--67. https://doi.org/10.3109/10408363.2015.1084990stanhope_sugar_2016
  439. #Huang, H. et al. (2016). The {Multifunctional} {Effects} of {Nobiletin} and {Its} {Metabolites} \textit{{In} {Vivo}} and \textit{{In} {Vitro}}. Evidence-Based Complementary and Alternative Medicine, 2016(1), 2918796. https://doi.org/10.1155/2016/2918796huang_multifunctional_2016
  440. #Faraone, S. et al. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1(1), 1--23. https://doi.org/10.1038/nrdp.2015.20faraone_attention-deficithyperactivity_2015
  441. #Pärtty, A. et al. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatric Research, 77(6), 823--828. https://doi.org/10.1038/pr.2015.51partty_possible_2015
  442. #Faraone, S. et al. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1(1), 1--23. https://doi.org/10.1038/nrdp.2015.20faraone_attention-deficithyperactivity_2015-1
  443. #Pärtty, A. et al. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatric Research, 77(6), 823--828. https://doi.org/10.1038/pr.2015.51partty_possible_2015-1
  444. #Zhai, Q. et al. (2015). Dietary {Strategies} for the {Treatment} of {Cadmium} and {Lead} {Toxicity}. Nutrients, 7(1), 552--571. https://doi.org/10.3390/nu7010552zhai_dietary_2015
  445. #Dyall, S. (2015). Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of {EPA}, {DPA} and {DHA}. Frontiers in Aging Neuroscience, 7. https://doi.org/10.3389/fnagi.2015.00052dyall_long-chain_2015
  446. #Banerjee, E. & Nandagopal, K. (2015). Does serotonin deficit mediate susceptibility to {ADHD}?. Neurochemistry International, 82, 52--68. https://doi.org/10.1016/j.neuint.2015.02.001banerjee_does_2015
  447. #Morris, M. et al. (2015). {MIND} diet associated with reduced incidence of {Alzheimer}'s disease. Alzheimer's \& Dementia, 11(9), 1007--1014. https://doi.org/10.1016/j.jalz.2014.11.009morris_mind_2015
  448. #van Vliet, S. et al. (2015). The {Skeletal} {Muscle} {Anabolic} {Response} to {Plant}- versus {Animal}-{Based} {Protein} {Consumption}. The Journal of Nutrition, 145(9), 1981--1991. https://doi.org/10.3945/jn.114.204305van_vliet_skeletal_2015
  449. #Li, Y. et al. (2015). Saturated {Fats} {Compared} {With} {Unsaturated} {Fats} and {Sources} of {Carbohydrates} in {Relation} to {Risk} of {Coronary} {Heart} {Disease}. Journal of the American College of Cardiology, 66(14), 1538--1548. https://doi.org/10.1016/j.jacc.2015.07.055li_saturated_2015
  450. #Fardet, A. & Rock, E. (2015). From a {Reductionist} to a {Holistic} {Approach} in {Preventive} {Nutrition} to {Define} {New} and {More} {Ethical} {Paradigms}. Healthcare, 3(4), 1054--1063. https://doi.org/10.3390/healthcare3041054fardet_reductionist_2015
  451. #Zhou, J. et al. (2015). The importance of {GLP}‐1 and {PYY} in resistant starch's effect on body fat in mice. Molecular Nutrition \& Food Research, 59(5), 1000--1003. https://doi.org/10.1002/mnfr.201400904zhou_importance_2015
  452. #Zhou, J. et al. (2015). The importance of {GLP}‐1 and {PYY} in resistant starch's effect on body fat in mice. Molecular Nutrition \& Food Research, 59(5), 1000--1003. https://doi.org/10.1002/mnfr.201400904zhou_importance_2015-1
  453. #Hollis, F. et al. (2015). Mitochondrial function in the brain links anxiety with social subordination. Proceedings of the National Academy of Sciences, 112(50), 15486--15491. https://doi.org/10.1073/pnas.1512653112hollis_mitochondrial_2015
  454. #Schmidt, K. et al. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793--1801. https://doi.org/10.1007/s00213-014-3810-0schmidt_prebiotic_2015
  455. #O’Mahony, S. et al. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, 32--48. https://doi.org/10.1016/j.bbr.2014.07.027omahony_serotonin_2015
  456. #Leung, K. & Thuret, S. (2015). Gut {Microbiota}: {A} {Modulator} of {Brain} {Plasticity} and {Cognitive} {Function} in {Ageing}. Healthcare, 3(4), 898--916. https://doi.org/10.3390/healthcare3040898leung_gut_2015
  457. #Gay, C. et al. (2015). (315) {Default} mode network connectivity in chronic fatigue syndrome patients. The Journal of Pain, 16(4), S54. https://doi.org/10.1016/j.jpain.2015.01.233gay_315_2015
  458. #Faraone, S. et al. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 1(1), 1--23. https://doi.org/10.1038/nrdp.2015.20faraone_attention-deficithyperactivity_2015-2
  459. #Pärtty, A. et al. (2015). A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatric Research, 77(6), 823--828. https://doi.org/10.1038/pr.2015.51partty_possible_2015-2
  460. #Volkow, N. et al. (2015). Caffeine increases striatal dopamine {D2}/{D3} receptor availability in the human brain. Translational Psychiatry, 5(4), e549--e549. https://doi.org/10.1038/tp.2015.46volkow_caffeine_2015
  461. #Thakkar, M. et al. (2015). Alcohol disrupts sleep homeostasis. Alcohol, 49(4), 299--310. https://doi.org/10.1016/j.alcohol.2014.07.019thakkar_alcohol_2015
  462. #Huang, J. et al. (2015). Circadian {Modulation} of {Dopamine} {Levels} and {Dopaminergic} {Neuron} {Development} {Contributes} to {Attention} {Deficiency} and {Hyperactive} {Behavior}. The Journal of Neuroscience, 35(6), 2572--2587. https://doi.org/10.1523/JNEUROSCI.2551-14.2015huang_circadian_2015
  463. #Burke, T. et al. (2015). Effects of caffeine on the human circadian clock in vivo and in vitro. Science Translational Medicine, 7(305). https://doi.org/10.1126/scitranslmed.aac5125burke_effects_2015
  464. #Schmidt, K. et al. (2015). Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology, 232(10), 1793--1801. https://doi.org/10.1007/s00213-014-3810-0schmidt_prebiotic_2015-1
  465. #Zhai, Q. et al. (2015). Dietary {Strategies} for the {Treatment} of {Cadmium} and {Lead} {Toxicity}. Nutrients, 7(1), 552--571. https://doi.org/10.3390/nu7010552zhai_dietary_2015-1
  466. #O’Mahony, S. et al. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 277, 32--48. https://doi.org/10.1016/j.bbr.2014.07.027omahony_serotonin_2015-1
  467. #Huang}, {. et al. (2015). Effect of vitamin {B}-12 and n-3 polyunsaturated fatty acids on plasma homocysteine, ferritin, {C}-reactive protein, and other cardiovascular risk factors: a randomized controlled trial. Asia Pacific Journal of Clinical Nutrition, 24(3). https://doi.org/10.6133/apjcn.2015.24.3.19tao_huang_effect_2015
  468. #Maltezos, S. et al. (2014). Glutamate/glutamine and neuronal integrity in adults with {ADHD}: a proton {MRS} study. Translational Psychiatry, 4(3), e373--e373. https://doi.org/10.1038/tp.2014.11maltezos_glutamateglutamine_2014
  469. #Liu, L. et al. (2014). Higher efficacy of dietary {DHA} provided as a phospholipid than as a triglyceride for brain {DHA} accretion in neonatal piglets. Journal of Lipid Research, 55(3), 531--539. https://doi.org/10.1194/jlr.M045930liu_higher_2014
  470. #Diekman, E. et al. (2014). Survival and {Psychomotor} {Development} {With} {Early} {Betaine} {Treatment} in {Patients} {With} {Severe} {Methylenetetrahydrofolate} {Reductase} {Deficiency}. JAMA Neurology, 71(2), 188. https://doi.org/10.1001/jamaneurol.2013.4915diekman_survival_2014
  471. #Rucklidge, J. et al. (2014). Vitamin–mineral treatment of attention-deficit hyperactivity disorder in adults: double-blind randomised placebo-controlled trial. British Journal of Psychiatry, 204(4), 306--315. https://doi.org/10.1192/bjp.bp.113.132126rucklidge_vitaminmineral_2014
  472. #Zmitek, K. et al. (2014). Factors {Influencing} the {Contents} of {Coenzyme} {Q10} and {Q9} in {Olive} {Oils}. Journal of agricultural and food chemistry, 62. https://doi.org/10.1021/jf5002167zmitek_factors_2014
  473. #Stevenson, J. et al. (2014). Research {Review}: {The} role of diet in the treatment of attention‐deficit/hyperactivity disorder – an appraisal of the evidence on efficacy and recommendations on the design of future studies. Journal of Child Psychology and Psychiatry, 55(5), 416--427. https://doi.org/10.1111/jcpp.12215stevenson_research_2014
  474. #Zhou, Y. & Danbolt, N. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of Neural Transmission, 121(8), 799--817. https://doi.org/10.1007/s00702-014-1180-8zhou_glutamate_2014
  475. #Perreault, M. et al. (2014). Heteromeric {Dopamine} {Receptor} {Signaling} {Complexes}: {Emerging} {Neurobiology} and {Disease} {Relevance}. Neuropsychopharmacology, 39(1), 156--168. https://doi.org/10.1038/npp.2013.148perreault_heteromeric_2014
  476. #Schwingshackl, L. & Hoffmann, G. (2014). Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids in Health and Disease, 13(1), 154. https://doi.org/10.1186/1476-511X-13-154schwingshackl_monounsaturated_2014
  477. #Luo, Y. & Xie, W. (2014). Effect of soaking and sprouting on iron and zinc availability in green and white faba bean ({Vicia} faba {L}.). Journal of Food Science and Technology, 51(12), 3970--3976. https://doi.org/10.1007/s13197-012-0921-7luo_effect_2014
  478. #Castro-Quezada, I. et al. (2014). The {Mediterranean} {Diet} and {Nutritional} {Adequacy}: {A} {Review}. Nutrients, 6(1), 231--248. https://doi.org/10.3390/nu6010231castro-quezada_mediterranean_2014
  479. #Katterman, S. et al. (2014). Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: {A} systematic review. Eating Behaviors, 15(2), 197--204. https://doi.org/10.1016/j.eatbeh.2014.01.005katterman_mindfulness_2014
  480. #Srikanthan, P. & Karlamangla, A. (2014). Muscle {Mass} {Index} {As} a {Predictor} of {Longevity} in {Older} {Adults}. The American Journal of Medicine, 127(6), 547--553. https://doi.org/10.1016/j.amjmed.2014.02.007srikanthan_muscle_2014
  481. #Le, L. & Sabaté, J. (2014). Beyond {Meatless}, the {Health} {Effects} of {Vegan} {Diets}: {Findings} from the {Adventist} {Cohorts}. Nutrients, 6(6), 2131--2147. https://doi.org/10.3390/nu6062131le_beyond_2014
  482. #Shaw, P. et al. (2014). Emotion {Dysregulation} in {Attention} {Deficit} {Hyperactivity} {Disorder}. American Journal of Psychiatry, 171(3), 276--293. https://doi.org/10.1176/appi.ajp.2013.13070966shaw_emotion_2014
  483. #Lopresti, A. & Drummond, P. (2014). Saffron ( \textit{{Crocus} sativus} ) for depression: a systematic review of clinical studies and examination of underlying antidepressant mechanisms of action. Human Psychopharmacology: Clinical and Experimental, 29(6), 517--527. https://doi.org/10.1002/hup.2434lopresti_saffron_2014
  484. #Soerensen, K. et al. (2014). Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men$^{\textrm{1}}$$^{\textrm{2}}$$^{\textrm{3}}$. The American Journal of Clinical Nutrition, 99(5), 984--991. https://doi.org/10.3945/ajcn.113.077735soerensen_effect_2014
  485. #Johnson, E. (2014). Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutrition Reviews, 72(9), 605--612. https://doi.org/10.1111/nure.12133johnson_role_2014
  486. #Ferguson, J. et al. (2014). Omega‐3 {PUFA} supplementation and the response to evoked endotoxemia in healthy volunteers. Molecular Nutrition \& Food Research, 58(3), 601--613. https://doi.org/10.1002/mnfr.201300368ferguson_omega3_2014
  487. #Chang, H. & Guarente, L. (2014). {SIRT1} and other sirtuins in metabolism. Trends in Endocrinology \& Metabolism, 25(3), 138--145. https://doi.org/10.1016/j.tem.2013.12.001chang_sirt1_2014
  488. #Liu, L. et al. (2014). Higher efficacy of dietary {DHA} provided as a phospholipid than as a triglyceride for brain {DHA} accretion in neonatal piglets. Journal of Lipid Research, 55(3), 531--539. https://doi.org/10.1194/jlr.M045930liu_higher_2014-1
  489. #Zhang, H. et al. (2014). Stimulatory effect of nobiletin, a citrus polymethoxy flavone, on catecholamine synthesis through {Ser19} and {Ser40} phosphorylation of tyrosine hydroxylase in cultured bovine adrenal medullary cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 387(1), 15--22. https://doi.org/10.1007/s00210-013-0916-6zhang_stimulatory_2014
  490. #Rommelse, N. & Buitelaar, J. (2013). Is there a future for restricted elimination diets in {ADHD} clinical practice?. European Child \& Adolescent Psychiatry, 22(4), 199--202. https://doi.org/10.1007/s00787-013-0394-xrommelse_is_2013
  491. #Kim, H. & Spector, A. (2013). Synaptamide, endocannabinoid-like derivative of docosahexaenoic acid with cannabinoid-independent function. Prostaglandins, Leukotrienes and Essential Fatty Acids, 88(1), 121--125. https://doi.org/10.1016/j.plefa.2012.08.002kim_synaptamide_2013
  492. #Johansson, J. et al. (2013). Decreased binding capacity ({B} max) of muscarinic acetylcholine receptors in fibroblasts from boys with attention-deficit/hyperactivity disorder ({ADHD}). ADHD Attention Deficit and Hyperactivity Disorders, 5(3), 267--271. https://doi.org/10.1007/s12402-013-0103-0johansson_decreased_2013
  493. #Rommelse, N. & Buitelaar, J. (2013). Is there a future for restricted elimination diets in {ADHD} clinical practice?. European Child \& Adolescent Psychiatry, 22(4), 199--202. https://doi.org/10.1007/s00787-013-0394-xrommelse_is_2013-1
  494. #Ramsden, C. et al. (2013). Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: evaluation of recovered data from the {Sydney} {Diet} {Heart} {Study} and updated meta-analysis. BMJ, 346(feb04 3), e8707--e8707. https://doi.org/10.1136/bmj.e8707ramsden_use_2013
  495. #Fortier, M. et al. (2013). Genetic {Evidence} for the {Association} of the {Hypothalamic}–{Pituitary}–{Adrenal} ({HPA}) {Axis} with {ADHD} and {Methylphenidate} {Treatment} {Response}. NeuroMolecular Medicine, 15(1), 122--132. https://doi.org/10.1007/s12017-012-8202-1fortier_genetic_2013
  496. #Crupi, R. et al. (2013). n-3 {Fatty} {Acids}: {Role} in {Neurogenesis} and {Neuroplasticity}. Current Medicinal Chemistry, 20(24), 2953--2963. https://doi.org/10.2174/09298673113209990140crupi_n-3_2013
  497. #Stonehouse, W. et al. (2013). {DHA} supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. The American Journal of Clinical Nutrition, 97(5), 1134--1143. https://doi.org/10.3945/ajcn.112.053371stonehouse_dha_2013
  498. #Pawlak, R. et al. (2013). How prevalent is vitamin {B} $_{\textrm{12}}$ deficiency among vegetarians?. Nutrition Reviews, 71(2), 110--117. https://doi.org/10.1111/nure.12001pawlak_how_2013
  499. #Clerc, P. et al. (2013). Magnesium {Sulfate} {Protects} {Against} the {Bioenergetic} {Consequences} of {Chronic} {Glutamate} {Receptor} {Stimulation}. PLoS ONE, 8(11), e79982. https://doi.org/10.1371/journal.pone.0079982clerc_magnesium_2013
  500. #Rommelse, N. & Buitelaar, J. (2013). Is there a future for restricted elimination diets in {ADHD} clinical practice?. European Child \& Adolescent Psychiatry, 22(4), 199--202. https://doi.org/10.1007/s00787-013-0394-xrommelse_is_2013-2
  501. #Kim, H. & Spector, A. (2013). Synaptamide, endocannabinoid-like derivative of docosahexaenoic acid with cannabinoid-independent function. Prostaglandins, Leukotrienes and Essential Fatty Acids, 88(1), 121--125. https://doi.org/10.1016/j.plefa.2012.08.002kim_synaptamide_2013-1
  502. #Sauder, K. et al. (2013). Effects of {Omega}-3 {Fatty} {Acid} {Supplementation} on {Heart} {Rate} {Variability} at {Rest} and {During} {Acute} {Stress} in {Adults} {With} {Moderate} {Hypertriglyceridemia}. Psychosomatic Medicine, 75(4), 382--389. https://doi.org/10.1097/PSY.0b013e318290a107sauder_effects_2013
  503. #Yoto, A. et al. (2012). Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids, 43(3), 1331--1337. https://doi.org/10.1007/s00726-011-1206-6yoto_oral_2012
  504. #O’Donnell, J. et al. (2012). Norepinephrine: {A} {Neuromodulator} {That} {Boosts} the {Function} of {Multiple} {Cell} {Types} to {Optimize} {CNS} {Performance}. Neurochemical Research, 37(11), 2496--2512. https://doi.org/10.1007/s11064-012-0818-xodonnell_norepinephrine_2012
  505. #Edden, R. et al. (2012). Reduced {GABA} {Concentration} in {Attention}-{Deficit}/{Hyperactivity} {Disorder}. Archives of General Psychiatry, 69(7). https://doi.org/10.1001/archgenpsychiatry.2011.2280edden_reduced_2012
  506. #Isaksson, J. et al. (2012). Cortisol levels in children with {Attention}-{Deficit}/{Hyperactivity} {Disorder}. Journal of Psychiatric Research, 46(11), 1398--1405. https://doi.org/10.1016/j.jpsychires.2012.08.021isaksson_cortisol_2012
  507. #Wilson, T. et al. (2012). Gamma-frequency neuronal activity is diminished in adults with attention-deficit/hyperactivity disorder: a pharmaco-{MEG} study. Journal of Psychopharmacology, 26(6), 771--777. https://doi.org/10.1177/0269881111430731wilson_gamma-frequency_2012
  508. # (2012). Scientific {Opinion} on {Dietary} {Reference} {Values} for protein. EFSA Journal, 10(2), 2557. https://doi.org/10.2903/j.efsa.2012.2557noauthor_scientific_2012
  509. #Millichap, J. & Yee, M. (2012). The {Diet} {Factor} in {Attention}-{Deficit}/{Hyperactivity} {Disorder}. Pediatrics, 129(2), 330--337. https://doi.org/10.1542/peds.2011-2199millichap_diet_2012
  510. #Millichap, J. & Yee, M. (2012). The {Diet} {Factor} in {Attention}-{Deficit}/{Hyperactivity} {Disorder}. Pediatrics, 129(2), 330--337. https://doi.org/10.1542/peds.2011-2199millichap_diet_2012-1
  511. #Yoto, A. et al. (2012). Oral intake of γ-aminobutyric acid affects mood and activities of central nervous system during stressed condition induced by mental tasks. Amino Acids, 43(3), 1331--1337. https://doi.org/10.1007/s00726-011-1206-6yoto_oral_2012-1
  512. #Pivac, N. et al. (2011). Human {Plasma} {Glycome} in {Attention}-{Deficit} {Hyperactivity} {Disorder} and {Autism} {Spectrum} {Disorders}. Molecular \& Cellular Proteomics, 10(1), M110.004200. https://doi.org/10.1074/mcp.M110.004200pivac_human_2011
  513. #Tongjaroenbuangam, W. et al. (2011). Neuroprotective effects of quercetin, rutin and okra ({Abelmoschus} esculentus {Linn}.) in dexamethasone-treated mice. Neurochemistry International, 59(5), 677--685. https://doi.org/10.1016/j.neuint.2011.06.014tongjaroenbuangam_neuroprotective_2011
  514. #Kim, H. et al. (2011). \textit{{N}} -{Docosahexaenoylethanolamide} promotes development of hippocampal neurons. Biochemical Journal, 435(2), 327--336. https://doi.org/10.1042/BJ20102118kim_n_2011
  515. #Bravo, J. et al. (2011). Ingestion of \textit{{Lactobacillus}} strain regulates emotional behavior and central {GABA} receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108(38), 16050--16055. https://doi.org/10.1073/pnas.1102999108bravo_ingestion_2011
  516. #Gilbert, D. et al. (2011). Motor cortex inhibition. Neurology, 76(7), 615--621. https://doi.org/10.1212/WNL.0b013e31820c2ebdgilbert_motor_2011
  517. #Simopoulos, A. (2011). Evolutionary {Aspects} of {Diet}: {The} {Omega}-6/{Omega}-3 {Ratio} and the {Brain}. Molecular Neurobiology, 44(2), 203--215. https://doi.org/10.1007/s12035-010-8162-0simopoulos_evolutionary_2011
  518. #Arnold, L. et al. (2011). Zinc for {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Placebo}-{Controlled} {Double}-{Blind} {Pilot} {Trial} {Alone} and {Combined} with {Amphetamine}. Journal of Child and Adolescent Psychopharmacology, 21(1), 1--19. https://doi.org/10.1089/cap.2010.0073arnold_zinc_2011
  519. #Serhan, C. & Petasis, N. (2011). Resolvins and {Protectins} in {Inflammation} {Resolution}. Chemical Reviews, 111(10), 5922--5943. https://doi.org/10.1021/cr100396cserhan_resolvins_2011
  520. #Howard, A. et al. (2011). {ADHD} {Is} {Associated} {With} a "{Western}" {Dietary} {Pattern} in {Adolescents}. Journal of attention disorders, 15, 403--411. https://doi.org/10.1177/1087054710365990howard_adhd_2011
  521. #Martel, M. et al. (2011). The {Dopamine} {Receptor} {D4} {Gene} ({DRD4}) {Moderates} {Family} {Environmental} {Effects} on {ADHD}. Journal of Abnormal Child Psychology, 39(1), 1--10. https://doi.org/10.1007/s10802-010-9439-5martel_dopamine_2011
  522. #Benedict, C. et al. (2011). Acute sleep deprivation reduces energy expenditure in healthy men. The American Journal of Clinical Nutrition, 93(6), 1229--1236. https://doi.org/10.3945/ajcn.110.006460benedict_acute_2011
  523. #Anderson, C. & Platten, C. (2011). Sleep deprivation lowers inhibition and enhances impulsivity to negative stimuli. Behavioural Brain Research, 217(2), 463--466. https://doi.org/10.1016/j.bbr.2010.09.020anderson_sleep_2011
  524. #Ratey, J. & Loehr, J. (2011). The positive impact of physical activity on cognition during adulthood: a review of underlying mechanisms, evidence and recommendations. revneuro, 22(2), 171--185. https://doi.org/10.1515/rns.2011.017ratey_positive_2011
  525. #Klein, E. et al. (2011). Vitamin {E} and the {Risk} of {Prostate} {Cancer}. JAMA, 306(14), 1549. https://doi.org/10.1001/jama.2011.1437klein_vitamin_2011
  526. #Tongjaroenbuangam, W. et al. (2011). Neuroprotective effects of quercetin, rutin and okra ({Abelmoschus} esculentus {Linn}.) in dexamethasone-treated mice. Neurochemistry International, 59(5), 677--685. https://doi.org/10.1016/j.neuint.2011.06.014tongjaroenbuangam_neuroprotective_2011-1
  527. #Van Reen, E. et al. (2011). Does {Timing} of {Alcohol} {Administration} {Affect} {Sleep}?. Sleep, 34(2), 195--205. https://doi.org/10.1093/sleep/34.2.195van_reen_does_2011
  528. #LeBlanc, J. et al. (2011). B-{Group} vitamin production by lactic acid bacteria - current knowledge and potential applications: {Vitamin} production by {LAB}. Journal of Applied Microbiology, 111(6), 1297--1309. https://doi.org/10.1111/j.1365-2672.2011.05157.xleblanc_b-group_2011
  529. #Kiecolt-Glaser, J. et al. (2011). Omega-3 supplementation lowers inflammation and anxiety in medical students: {A} randomized controlled trial. Brain, Behavior, and Immunity, 25(8), 1725--1734. https://doi.org/10.1016/j.bbi.2011.07.229kiecolt-glaser_omega-3_2011
  530. #Pravst, I. et al. (2010). Coenzyme {Q10} contents in foods and fortification strategies. {Crit} {Rev} {Food} {Sci} {Nutr}. Critical Reviews in Food Science and Nutrition, 50, 269--280.pravst_coenzyme_2010
  531. #Oades, R. (2010). The {Role} of {Serotonin} in {Attention}-{Deficit} {Hyperactivity} {Disorder} ({ADHD}).oades_role_2010
  532. #Neveu, V. et al. (2010). Phenol-{Explorer}: an online comprehensive database on polyphenol contents in foods. Database, 2010(0), bap024--bap024. https://doi.org/10.1093/database/bap024neveu_phenol-explorer_2010
  533. #Smith, A. et al. (2010). Homocysteine-{Lowering} by {B} {Vitamins} {Slows} the {Rate} of {Accelerated} {Brain} {Atrophy} in {Mild} {Cognitive} {Impairment}: {A} {Randomized} {Controlled} {Trial}. PLoS ONE, 5(9), e12244. https://doi.org/10.1371/journal.pone.0012244smith_homocysteine-lowering_2010
  534. #Wójcik, O. et al. (2010). The potential protective effects of taurine on coronary heart disease. Atherosclerosis, 208(1), 19--25. https://doi.org/10.1016/j.atherosclerosis.2009.06.002wojcik_potential_2010
  535. #Pravst, I. et al. (2010). Coenzyme {Q10} contents in foods and fortification strategies. {Crit} {Rev} {Food} {Sci} {Nutr}. Critical Reviews in Food Science and Nutrition, 50, 269--280.pravst_coenzyme_2010-1
  536. #Deichmann, R. et al. (2010). Coenzyme q10 and statin-induced mitochondrial dysfunction.. Ochsner journal, 10(1), 16--21.deichmann_coenzyme_2010
  537. #Gibellini, F. & Smith, T. (2010). The {Kennedy} pathway— \textit{{De} novo} synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life, 62(6), 414--428. https://doi.org/10.1002/iub.337gibellini_kennedy_2010
  538. #Huss, M. et al. (2010). Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study. Lipids in Health and Disease, 9(1), 105. https://doi.org/10.1186/1476-511X-9-105huss_supplementation_2010
  539. #Uribarri, J. et al. (2010). Advanced {Glycation} {End} {Products} in {Foods} and a {Practical} {Guide} to {Their} {Reduction} in the {Diet}. Journal of the American Dietetic Association, 110(6), 911--916.e12. https://doi.org/10.1016/j.jada.2010.03.018uribarri_advanced_2010
  540. #Coda, R. et al. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid ({GABA}). International Journal of Food Microbiology, 137(2-3), 236--245. https://doi.org/10.1016/j.ijfoodmicro.2009.12.010coda_use_2010
  541. #Coda, R. et al. (2010). Use of sourdough fermentation and pseudo-cereals and leguminous flours for the making of a functional bread enriched of γ-aminobutyric acid ({GABA}). International Journal of Food Microbiology, 137(2-3), 236--245. https://doi.org/10.1016/j.ijfoodmicro.2009.12.010coda_use_2010-1
  542. #Lane, S. (2010). Sensory over-responsivity and {ADHD}: differentiating using electrodermal responses, cortisol, and anxiety. Frontiers in Integrative Neuroscience, 4. https://doi.org/10.3389/fnint.2010.00008lane_sensory_2010
  543. #Oades, R. (2010). The {Role} of {Serotonin} in {Attention}-{Deficit} {Hyperactivity} {Disorder} ({ADHD}).oades_role_2010-1
  544. #Kindel, T. et al. (2010). The mechanism of the formation and secretion of chylomicrons. Atherosclerosis Supplements, 11(1), 11--16. https://doi.org/10.1016/j.atherosclerosissup.2010.03.003kindel_mechanism_2010
  545. #Kim, J. et al. (2009). Production of γ-aminobutyric acid in black raspberry juice during fermentation by {Lactobacillus} brevis {GABA100}. International Journal of Food Microbiology, 130(1), 12--16. https://doi.org/10.1016/j.ijfoodmicro.2008.12.028kim_production_2009
  546. #Cumyn, L. et al. (2009). Comorbidity in {Adults} with {Attention}-{Deficit} {Hyperactivity} {Disorder}. The Canadian Journal of Psychiatry, 54(10), 673--683. https://doi.org/10.1177/070674370905401004cumyn_comorbidity_2009
  547. #Davis, J. et al. (2009). Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 296(4), R1071--R1077. https://doi.org/10.1152/ajpregu.90925.2008davis_quercetin_2009
  548. #van West, D. et al. (2009). Differences in hypothalamic–pituitary–adrenal axis functioning among children with {ADHD} predominantly inattentive and combined types. European Child \& Adolescent Psychiatry, 18(9), 543--553. https://doi.org/10.1007/s00787-009-0011-1van_west_differences_2009
  549. #Rodriguez Bambico, F. et al. (2009). Endocannabinoids in the {Treatment} of {Mood} {Disorders}: {Evidence} from {Animal} {Models}. Current Pharmaceutical Design, 15(14), 1623--1646. https://doi.org/10.2174/138161209788168029rodriguez_bambico_endocannabinoids_2009
  550. #Simopoulos, A. (2009). Evolutionary {Aspects} of the {Dietary} {Omega}–6:{Omega}–3 {Fatty} {Acid} {Ratio}: {Medical} {Implications}.simopoulos_evolutionary_2009
  551. #Cortese, S. et al. (2009). Sleep in {Children} {With} {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Meta}-{Analysis} of {Subjective} and {Objective} {Studies}. Journal of the American Academy of Child \& Adolescent Psychiatry, 48(9), 894--908. https://doi.org/10.1097/CHI.0b013e3181ac09c9cortese_sleep_2009
  552. #Yang, L. et al. (2009). Combination therapy with {Coenzyme} {Q} $_{\textrm{10}}$ and creatine produces additive neuroprotective effects in models of {Parkinson}’s and {Huntington}’s {Diseases}. Journal of Neurochemistry, 109(5), 1427--1439. https://doi.org/10.1111/j.1471-4159.2009.06074.xyang_combination_2009
  553. #Taylor, E. et al. (2009). {DASH}-{Style} {Diet} {Associates} with {Reduced} {Risk} for {Kidney} {Stones}. Journal of the American Society of Nephrology, 20(10), 2253--2259. https://doi.org/10.1681/ASN.2009030276taylor_dash-style_2009
  554. #Harrison, F. & May, J. (2009). Vitamin {C} function in the brain: vital role of the ascorbate transporter {SVCT2}. Free Radical Biology and Medicine, 46(6), 719--730. https://doi.org/10.1016/j.freeradbiomed.2008.12.018harrison_vitamin_2009
  555. #MacFabe, D. et al. (2008). A {Novel} {Rodent} {Model} of {Autism}: {Intraventricular} {Infusions} of {Propionic} {Acid} {Increase} {Locomotor} {Activity} and {Induce} {Neuroinflammation} and {Oxidative} {Stress} in {Discrete} {Regions} of {Adult} {Rat} {Brain}. American Journal of Biochemistry and Biotechnology, 4(2), 146--166. https://doi.org/10.3844/ajbbsp.2008.146.166macfabe_novel_2008
  556. #Boots, A. et al. (2008). Health effects of quercetin: {From} antioxidant to nutraceutical. European Journal of Pharmacology, 585(2-3), 325--337. https://doi.org/10.1016/j.ejphar.2008.03.008boots_health_2008
  557. #Gillum, M. et al. (2008). N-acylphosphatidylethanolamine, a {Gut}- {Derived} {Circulating} {Factor} {Induced} by {Fat} {Ingestion}, {Inhibits} {Food} {Intake}. Cell, 135(5), 813--824. https://doi.org/10.1016/j.cell.2008.10.043gillum_n-acylphosphatidylethanolamine_2008
  558. #Kuznetsova, A. & Deth, R. (2008). A model for modulation of neuronal synchronization by {D4} dopamine receptor-mediated phospholipid methylation. Journal of Computational Neuroscience, 24(3), 314--329. https://doi.org/10.1007/s10827-007-0057-3kuznetsova_model_2008
  559. #Houston, D. et al. (2008). Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the {Health}, {Aging}, and {Body} {Composition} ({Health} {ABC}) {Study}. The American Journal of Clinical Nutrition, 87(1), 150--155. https://doi.org/10.1093/ajcn/87.1.150houston_dietary_2008
  560. #Gänzle, M. et al. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in Food Science \& Technology, 19(10), 513--521. https://doi.org/10.1016/j.tifs.2008.04.002ganzle_proteolysis_2008
  561. #Oscar Berman, M. et al. (2008). Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatric Disease and Treatment, 893. https://doi.org/10.2147/NDT.S2627oscar_berman_attention-deficit-hyperactivity_2008
  562. #Purohit, V. et al. (2008). Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: {Summary} of a symposium. Alcohol, 42(5), 349--361. https://doi.org/10.1016/j.alcohol.2008.03.131purohit_alcohol_2008
  563. #Thors, L. et al. (2007). Inhibition of the cellular uptake of anandamide by genistein and its analogue daidzein in cells with different levels of fatty acid amide hydrolase‐driven uptake. British Journal of Pharmacology, 152(5), 744--750. https://doi.org/10.1038/sj.bjp.0707401thors_inhibition_2007
  564. #Gibson, R. (2007). The {Role} of {Diet}- and {Host}-{Related} {Factors} in {Nutrient} {Bioavailability} and {Thus} in {Nutrient}-{Based} {Dietary} {Requirement} {Estimates}. Food and Nutrition Bulletin, 28(1\_suppl1), S77--S100. https://doi.org/10.1177/15648265070281S108gibson_role_2007
  565. #Hünnerkopf, R. et al. (2007). Interaction between {BDNF} {Val66Met} and {Dopamine} {Transporter} {Gene} {Variation} {Influences} {Anxiety}-{Related} {Traits}. Neuropsychopharmacology, 32(12), 2552--2560. https://doi.org/10.1038/sj.npp.1301383hunnerkopf_interaction_2007
  566. #Spector, R. & Johanson, C. (2007). {REVIEW}: {Vitamin} transport and homeostasis in mammalian brain: focus on {Vitamins} {B} and {E}. Journal of Neurochemistry, 103(2), 425--438. https://doi.org/10.1111/j.1471-4159.2007.04773.xspector_review_2007
  567. #Froy, O. & Miskin, R. (2007). The interrelations among feeding, circadian rhythms and ageing. Progress in Neurobiology, 82(3), 142--150. https://doi.org/10.1016/j.pneurobio.2007.03.002froy_interrelations_2007
  568. #Afaghi, A. et al. (2007). High-glycemic-index carbohydrate meals shorten sleep onset. The American Journal of Clinical Nutrition, 85(2), 426--430. https://doi.org/10.1093/ajcn/85.2.426afaghi_high-glycemic-index_2007
  569. #Bulut, M. et al. (2007). Malondialdehyde levels in adult attention-deficit hyperactivity disorder. Journal of psychiatry \& neuroscience: JPN, 32(6), 435--438.bulut_malondialdehyde_2007
  570. #Bulut, M. et al. (2007). Malondialdehyde levels in adult attention-deficit hyperactivity disorder. Journal of psychiatry \& neuroscience: JPN, 32(6), 435--438.bulut_malondialdehyde_2007-1
  571. #Camuesco, D. et al. (2006). Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in {EPA} and {DHA} (n-3) polyunsaturated fatty acids, in rats with {DSS}-induced colitis. Clinical Nutrition, 25(3), 466--476. https://doi.org/10.1016/j.clnu.2005.12.009camuesco_intestinal_2006
  572. #Ju, Y. et al. (2006). Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis, 27(6), 1292--1299. https://doi.org/10.1093/carcin/bgi370ju_genistein_2006
  573. #Antoniades, C. et al. (2006). 5-{Methyltetrahydrofolate} {Rapidly} {Improves} {Endothelial} {Function} and {Decreases} {Superoxide} {Production} in {Human} {Vessels}. Circulation, 114(11), 1193--1201. https://doi.org/10.1161/CIRCULATIONAHA.106.612325antoniades_5-methyltetrahydrofolate_2006
  574. #Solinas, M. et al. (2006). Anandamide administration alone and after inhibition of fatty acid amide hydrolase ({FAAH}) increases dopamine levels in the nucleus accumbens shell in rats. Journal of Neurochemistry, 98(2), 408--419. https://doi.org/10.1111/j.1471-4159.2006.03880.xsolinas_anandamide_2006
  575. #Roche, M. (2006). Improvement of neurobehavioral disorders in children supplemented with magnesium-vitamin {B6}. .m_mousain-bosc_1_improvement_2006
  576. #McNamara, R. & Carlson, S. (2006). Role of omega-3 fatty acids in brain development and function: {Potential} implications for the pathogenesis and prevention of psychopathology. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75(4-5), 329--349. https://doi.org/10.1016/j.plefa.2006.07.010mcnamara_role_2006
  577. #Waldmann, A. et al. (2006). Dietary intake of vitamin {B} $_{\textrm{6}}$ and concentration of vitamin {B} $_{\textrm{6}}$ in blood samples of {German} vegans. Public Health Nutrition, 9(6), 779--784. https://doi.org/10.1079/PHN2005895waldmann_dietary_2006
  578. #Fink, M. et al. (2006). Effect of {Added} {Asparagine} and {Glycine} on {Acrylamide} {Content} in {Yeast}‐{Leavened} {Bread}. Cereal Chemistry, 83(2), 218--222. https://doi.org/10.1094/CC-83-0218fink_effect_2006
  579. #Akhondzadeh, S. et al. (2005). \textit{{Passiflora} incarnata} in the treatment of attention-deficit hyperactivity disorder in children and adolescents. Therapy, 2(4), 609--614. https://doi.org/10.2217/14750708.2.4.609akhondzadeh_passiflora_2005
  580. #Chai, W. & Liebman, M. (2005). Effect of {Different} {Cooking} {Methods} on {Vegetable} {Oxalate} {Content}. Journal of Agricultural and Food Chemistry, 53(8), 3027--3030. https://doi.org/10.1021/jf048128dchai_effect_2005
  581. #Walrand, S. & Boirie, Y. (2005). Optimizing protein intake in aging. Current Opinion in Clinical Nutrition \& Metabolic Care, 8(1).walrand_optimizing_2005
  582. #Fielding, J. et al. (2005). Increases in plasma lycopene concentration after consumption of tomatoes cooked with olive oil. Asia Pacific Journal of Clinical Nutrition, 14(2), 131--136.fielding_increases_2005
  583. #Vertuani, S. et al. (2004). The {Antioxidants} and {Pro}-{Antioxidants} {Network}: {An} {Overview}. Current Pharmaceutical Design, 10(14), 1677--1694. https://doi.org/10.2174/1381612043384655vertuani_antioxidants_2004
  584. #Zelnik, N. et al. (2004). Range of {Neurologic} {Disorders} in {Patients} {With} {Celiac} {Disease}. Pediatrics, 113(6), 1672--1676. https://doi.org/10.1542/peds.113.6.1672zelnik_range_2004
  585. #Akhondzadeh, S. et al. (2004). Zinc sulfate as an adjunct to methylphenidate for the treatment of attention deficit hyperactivity disorder in children: {A} double blind and randomized trial [{ISRCTN64132371}]. BMC Psychiatry, 4(1), 9. https://doi.org/10.1186/1471-244X-4-9akhondzadeh_zinc_2004
  586. #Fuehrlein, B. et al. (2004). Differential {Metabolic} {Effects} of {Saturated} {Versus} {Polyunsaturated} {Fats} in {Ketogenic} {Diets}. The Journal of Clinical Endocrinology \& Metabolism, 89(4), 1641--1645. https://doi.org/10.1210/jc.2003-031796fuehrlein_differential_2004
  587. #Marx, N. et al. (2004). Peroxisome {Proliferator}-{Activated} {Receptors} and {Atherogenesis}. Circulation Research, 94(9), 1168--1178. https://doi.org/10.1161/01.RES.0000127122.22685.0Amarx_peroxisome_2004
  588. #Charach, A. et al. (2004). Stimulant {Treatment} {Over} {Five} {Years}: {Adherence}, {Effectiveness}, and {Adverse} {Effects}. Journal of the American Academy of Child \& Adolescent Psychiatry, 43(5), 559--567. https://doi.org/10.1097/00004583-200405000-00009charach_stimulant_2004
  589. #Brown, M. et al. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. The American Journal of Clinical Nutrition, 80(2), 396--403. https://doi.org/10.1093/ajcn/80.2.396brown_carotenoid_2004
  590. #Brown, M. et al. (2004). Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. The American Journal of Clinical Nutrition, 80(2), 396--403. https://doi.org/10.1093/ajcn/80.2.396brown_carotenoid_2004-1
  591. #Avshalumov, M. & Rice, M. (2003). Activation of {ATP}-sensitive {K} $^{\textrm{+}}$ ({K} $_{\textrm{{ATP}}}$ ) channels by {H} $_{\textrm{2}}$ {O} $_{\textrm{2}}$ underlies glutamate-dependent inhibition of striatal dopamine release. Proceedings of the National Academy of Sciences, 100(20), 11729--11734. https://doi.org/10.1073/pnas.1834314100avshalumov_activation_2003
  592. #Wurtman, R. et al. (2003). Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. The American Journal of Clinical Nutrition, 77(1), 128--132. https://doi.org/10.1093/ajcn/77.1.128wurtman_effects_2003
  593. #Olthof, M. et al. (2003). Low {Dose} {Betaine} {Supplementation} {Leads} to {Immediate} and {Long} {Term} {Lowering} of {Plasma} {Homocysteine} in {Healthy} {Men} and {Women}. The Journal of Nutrition, 133(12), 4135--4138. https://doi.org/10.1093/jn/133.12.4135olthof_low_2003
  594. #Engström, G. et al. (2003). Inflammation-{Sensitive} {Plasma} {Proteins} {Are} {Associated} {With} {Future} {Weight} {Gain}. Diabetes, 52(8), 2097--2101. https://doi.org/10.2337/DIABETES.52.8.2097engstrom_inflammation-sensitive_2003
  595. #Pfrieger, F. (2003). Role of cholesterol in synapse formation and function. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1610(2), 271--280. https://doi.org/10.1016/S0005-2736(03)00024-5pfrieger_role_2003
  596. #Tsai, S. (2003). Attention-deficit hyperactivity disorder and brain-derived neurotrophic factor: a speculative hypothesis. Medical Hypotheses, 60(6), 849--851. https://doi.org/10.1016/S0306-9877(03)00052-5tsai_attention-deficit_2003
  597. #Van Oudheusden, L. & Scholte, H. (2002). Efficacy of carnitine in the treatment of children with attention-deficit hyperactivity disorder. Prostaglandins, Leukotrienes and Essential Fatty Acids, 67(1), 33--38. https://doi.org/10.1054/plef.2002.0378van_oudheusden_efficacy_2002
  598. #Dorrego, M. et al. (2002). A {Randomized}, {Double}-{Blind}, {Crossover} {Study} of {Methylphenidate} and {Lithium} in {Adults} {With} {Attention}-{Deficit}/{Hyperactivity} {Disorder}: {Preliminary} {Findings}. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(3), 289--295. https://doi.org/10.1176/jnp.14.3.289dorrego_randomized_2002
  599. #Watanabe, F. et al. (2002). Characterization and {Bioavailability} of {Vitamin} {B12}-{Compounds} from {Edible} {Algae}.. Journal of Nutritional Science and Vitaminology, 48(5), 325--331. https://doi.org/10.3177/jnsv.48.325watanabe_characterization_2002
  600. #Aston-Jones, G. et al. (2000). Locus coeruleus and regulation of behavioral flexibility and attention.aston-jones_locus_2000
  601. #Kato, T. & Kato, N. (2000). Mitochondrial dysfunction in bipolar disorder. Bipolar Disorders, 2(3), 180--190. https://doi.org/10.1034/j.1399-5618.2000.020305.xkato_mitochondrial_2000
  602. #Aston-Jones, G. et al. (2000). Locus coeruleus and regulation of behavioral flexibility and attention. , 165--182. https://doi.org/10.1016/S0079-6123(00)26013-5aston-jones_locus_2000-1
  603. #Manary, M. et al. (2000). Dietary {Phytate} {Reduction} {Improves} {Zinc} {Absorption} in {Malawian} {Children} {Recovering} from {Tuberculosis} but {Not} in {Well} {Children}. The Journal of Nutrition, 130(12), 2959--2964. https://doi.org/10.1093/jn/130.12.2959manary_dietary_2000
  604. #Manary, M. et al. (2000). Dietary {Phytate} {Reduction} {Improves} {Zinc} {Absorption} in {Malawian} {Children} {Recovering} from {Tuberculosis} but {Not} in {Well} {Children}. The Journal of Nutrition, 130(12), 2959--2964. https://doi.org/10.1093/jn/130.12.2959manary_dietary_2000-1
  605. #Huang, R. et al. (1999). The tyrosine kinase inhibitor genistein directly inhibits {GABAA} receptors. Molecular Brain Research, 67(1), 177--183. https://doi.org/10.1016/S0169-328X(99)00061-3huang_tyrosine_1999
  606. #GREINER, R. & KONIETZNY, U. (1999). {IMPROVING} {ENZYMATIC} {REDUCTION} of {MYO}-{INOSITOL} {PHOSPHATES} {WITH} {INHIBITORY} {EFFECTS} {ON} {MINERAL} {ABSORPTION} {IN} {BLACK} {BEANS} ({PHASEOLUS} {VULGARIS} {VAR}. {PRETO}). Journal of Food Processing and Preservation, 23(3), 249--261. https://doi.org/https://doi.org/10.1111/j.1745-4549.1999.tb00383.xgreiner_improving_1999
  607. #Spiegel, K. et al. (1999). Impact of sleep debt on metabolic and endocrine function. The Lancet, 354(9188), 1435--1439. https://doi.org/10.1016/S0140-6736(99)01376-8spiegel_impact_1999
  608. #Lombard, J. (1998). Autism: a mitochondrial disorder?. Medical Hypotheses, 50(6), 497--500. https://doi.org/10.1016/S0306-9877(98)90270-5lombard_autism_1998
  609. #Evans, Μ. & Amiel, S. (1998). Carbohydrates as a {Cerebral} {Metabolic} {Fuel}. Journal of Pediatric Endocrinology and Metabolism, 11(Supplement). https://doi.org/10.1515/JPEM.1998.11.S1.99evans_carbohydrates_1998
  610. #Massimino, S. et al. (1998). Fermentable {Dietary} {Fiber} {Increases} {GLP}-1 {Secretion} and {Improves} {Glucose} {Homeostasis} {Despite} {Increased} {Intestinal} {Glucose} {Transport} {Capacity} in {Healthy} {Dogs}. The Journal of Nutrition, 128(10), 1786--1793. https://doi.org/10.1093/jn/128.10.1786massimino_fermentable_1998
  611. #Quig, D. (1998). Cysteine metabolism and metal toxicity. Alternative Medicine Review: A Journal of Clinical Therapeutic, 3(4), 262--270.quig_cysteine_1998
  612. #Shoba, G. et al. (1998). Influence of {Piperine} on the {Pharmacokinetics} of {Curcumin} in {Animals} and {Human} {Volunteers}. Planta Medica, 64(04), 353--356. https://doi.org/10.1055/s-2006-957450shoba_influence_1998
  613. #Collaboration, H. (1998). Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. {Homocysteine} {Lowering} {Trialists}' {Collaboration}. BMJ (Clinical research ed.), 316(7135), 894--898.collaboration_lowering_1998
  614. #Packer, L. et al. (1997). Vitamin {E} and the {Metabolic} {Antioxidant} {Network}. In Molecular {Mechanisms} of {Signalling} and {Membrane} {Transport} (pp. 281--304). Springer Berlin Heidelberg.packer_vitamin_1997
  615. #Bare, D. et al. (1995). The {Tyrosine} {Kinase} {Inhibitor} {Genistein} {Increases} {Endogenous} {Dopamine} {Release} from {Normal} and {Weaver} {Mutant} {Mouse} {Striatal} {Slices}. Journal of Neurochemistry, 65(5), 2096--2104. https://doi.org/10.1046/j.1471-4159.1995.65052096.xbare_tyrosine_1995
  616. #Berglund, M. et al. (1994). Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake.. Environmental Health Perspectives, 102(12), 1058--1066. https://doi.org/10.1289/ehp.941021058berglund_intestinal_1994
  617. #Zametkin, A. et al. (1990). Cerebral {Glucose} {Metabolism} in {Adults} with {Hyperactivity} of {Childhood} {Onset}. New England Journal of Medicine, 323(20), 1361--1366. https://doi.org/10.1056/NEJM199011153232001zametkin_cerebral_1990
  618. #Hallberg, L. et al. (1989). Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. The American Journal of Clinical Nutrition, 49(1), 140--144. https://doi.org/10.1093/ajcn/49.1.140hallberg_iron_1989
  619. #Lyons, P. & Truswell, A. (1988). Serotonin precursor influenced by type of carbohydrate meal in healthy adults. The American Journal of Clinical Nutrition, 47(3), 433--439. https://doi.org/10.1093/ajcn/47.3.433lyons_serotonin_1988
  620. #Reimherr}, {. & Ward}, {. (1987). An open trial of {L}-tyrosine in the treatment of attention deficit disorder, residual type. American Journal of Psychiatry, 144(8), 1071--1073. https://doi.org/10.1176/ajp.144.8.1071f_w_reimherr_open_1987
  621. #Wood, D. et al. (1985). Treatment of attention deficit disorder with {DL}-phenylalanine. Psychiatry Research, 16(1), 21--26. https://doi.org/10.1016/0165-1781(85)90024-1wood_treatment_1985
  622. #Wood, D. et al. (1985). Treatment of attention deficit disorder with {DL}-phenylalanine. Psychiatry Research, 16(1), 21--26. https://doi.org/10.1016/0165-1781(85)90024-1wood_treatment_1985-1
  623. #Spector, R. (1978). {VITAMIN} {B}$_{\textrm{6}}$ {TRANSPORT} {IN} {THE} {CENTRAL} {NERVOUS} {SYSTEM}: \textit{{IN} {VIVO}} {STUDIES}. Journal of Neurochemistry, 30(4), 881--887. https://doi.org/10.1111/j.1471-4159.1978.tb10797.xspector_vitamin_1978
  624. #Haber, G. et al. (1977). {DEPLETION} {AND} {DISRUPTION} {OF} {DIETARY} {FIBRE}. The Lancet, 310(8040), 679--682. https://doi.org/10.1016/S0140-6736(77)90494-9haber_depletion_1977
  625. #Stephenson, M. et al. (1947). The {Production} of {Acetylcholine} by a {Strain} of {Lactobacillus} plantarum. Journal of General Microbiology, 1(3), 279--298. https://doi.org/10.1099/00221287-1-3-279stephenson_production_1947
  626. # (). . .noauthor_notitle_nodate
  627. #a, M. (). Taurine and its analogs in neurological disorders: {Focus} on therapeutic potential and molecular mechanisms. .md_jakaria_a_taurine_nodate
  628. #Tao Huang, K. (). https://www.researchgate.net/publication/283712589\_Effect\_of\_vitamin\_B-12\_and\_n-3\_polyunsaturated\_fatty\_acids\_on\_plasma\_homocysteine\_ferritin\_C-reactive\_protein\_and\_other\_cardiovascular\_risk\_factors\_A\_randomized\_controlled\_trial. research gate.tao_huang_httpswwwresearchgatenetpublication283712589_effect_of_vitamin_b-12_and_n-3_polyunsaturated_fatty_acids_on_plasma_homocysteine_ferritin_c-reactive_protein_and_other_cardiovascular_risk_factors_a_randomized_controlled_trial_nodate
  629. #2*, M. (). N-3 polyunsaturated fatty acids in psychiatric diseases: {Mechanisms} and clinical data. https://www.nel.edu/userfiles/articlesnew/NEL331112R01.pdf.miroslav_zeman_1_n-3_nodate
  630. # (). 22214254. .noauthor_22214254_nodate
  631. #Kapoor, M. (). The effects of {L}-theanine ({Suntheanine}®) on objective sleep quality in boys with attention deficit hyperactivity disorder ({ADHD}): a randomized, double-blind, placebo-controlled clinical trial. research gate.michael_r_lyon_1_effects_nodate
  632. # (). pmc\_5620801. .noauthor_pmc_5620801_nodate
  633. # (). 30725952. .noauthor_30725952_nodate
  634. # (). pmc\_8582009. .noauthor_pmc_8582009_nodate
  635. #Strasser, A. et al. (). {ARTICLE} {Glutamine}-to-glutamate ratio in the nucleus accumbens predicts effort-based motivated performance in humans. Neuropsychopharmacology. https://doi.org/10.1038/s41386-020-0760-6strasser_article_nodate
  636. # (). Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. {Lipids} in {Health} and {Disease}. .noauthor_monounsaturated_nodate
  637. # (). 16846100. .noauthor_16846100_nodate
  638. # (). citation\_ris. .noauthor_citation_ris_nodate
  639. # (). 28854932. .noauthor_28854932_nodate
  640. #al}, {. (). Vitamin {B1} ({Thiamine}) [{Updated} 2024 {Jan} 31]. .doshi_et_al_vitamin_nodate
  641. #Zeman, M. & R}, {. (). 23391975. .zeman_23391975_nodate
  642. #2, b. (). Interactions of {Oxytocin} and {Dopamine}—{Effects} on {Behavior} in {Health} and {Disease}. MDPI.by_maria_petersson_1_interactions_nodate
  643. #NHS (). {NICE} addendum on dietary requirements.nhs_nice_nodate
  644. #Lonsdale, D. (). Treatment of autism spectrum children with thiamine tetrahydrofurfuryl disulfide: a pilot study.". Neuroendocrinology Letters, 23.4 (2002): 303-308..lonsdale_treatment_nodate
  645. # (). . .noauthor_notitle_nodate-1
  646. # (). {ADHD}. .noauthor_adhd_nodate
  647. # (). {SCFA}.noauthor_scfa_nodate
  648. # (). {ADHD}. .noauthor_adhd_nodate-1
  649. # (). Gut microbiome supplementation as therapy for metabolic syndrome. , 14. https://doi.org/10.4239/wjd.v14.i10.1502noauthor_gut_nodate
  650. # (). A randomised controlled study shows supplementation of overweight and obese adults with lactobacilli and bifidobacteria reduces bodyweight and improves well-being. , 10. https://doi.org/10.1038/s41598-020-60991-7noauthor_randomised_nodate
  651. # (). Strategies for improvement of gamma-aminobutyric acid ({GABA}) biosynthesis \textit{via} lactic acid bacteria ({LAB}) fermentation. , 14. https://doi.org/10.1039/D2FO03936Bnoauthor_strategies_nodate
  652. # (). \textit{{N}} -{Docosahexaenoylethanolamide} promotes development of hippocampal neurons. , 435. https://doi.org/10.1042/BJ20102118noauthor_n_nodate
  653. #Reimherr, F. (). An open trial of {L}-tyrosine in the treatment of attention deficit disorder, residual type. American Journal of Psychiatry, 144(8). https://doi.org/10.1176/ajp.144.8.1071reimherr_open_nodate
  654. # (). {ASD}. .noauthor_asd_nodate
  655. # (). Glutamatergic and {GABAergic} gene sets in attention-deficit/hyperactivity disorder: association to overlapping traits in {ADHD} and autism. , 7. https://doi.org/10.1038/tp.2016.273noauthor_glutamatergic_nodate
  656. # (). Mitochondrial dysfunction in bipolar disorder. , 2. https://doi.org/10.1034/j.1399-5618.2000.020305.xnoauthor_mitochondrial_nodate
  657. # (). Mitochondrial dysfunction in {Parkinson}’s disease – a key disease hallmark with therapeutic potential. , 18. https://doi.org/10.1186/s13024-023-00676-7noauthor_mitochondrial_nodate-1
  658. # (). Function of {Akkermansia} muciniphila in type 2 diabetes and related diseases. , 14. https://doi.org/10.3389/fmicb.2023.1172400noauthor_function_nodate
  659. # (). Ingestion of \textit{{Lactobacillus}} strain regulates emotional behavior and central {GABA} receptor expression in a mouse via the vagus nerve. , 108. https://doi.org/10.1073/pnas.1102999108noauthor_ingestion_nodate